An iterative method for the creation of structured hexahedral meshes over complex orography

Abstract In this paper we propose a technique for measuring the quality of hexahedral Cartesian meshes used to model meso-scale atmospheric circulation in 3D. It is used to verify the progress of a novel method for satisfying the Delaunay criterion for structured hexahedral meshes over complex orography with high gradients and wide gradient variability. Based on a simile with potential energy, the iterative method of mesh smoothing is shown to improve mesh quality with logarithmic convergence. The method is evaluated in a practical application in a specific geographic location.

[1]  Michael J. Aftosmis,et al.  Robust and efficient Cartesian mesh generation for component-based geometry , 1997 .

[2]  Victor I. Weingarten,et al.  The controversy over hex or tet meshing , 1994 .

[3]  Mark Yerry,et al.  A Modified Quadtree Approach To Finite Element Mesh Generation , 1983, IEEE Computer Graphics and Applications.

[4]  N. Weatherill,et al.  Efficient three‐dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints , 1994 .

[5]  V. Parthasarathy,et al.  A constrained optimization approach to finite element mesh smoothing , 1991 .

[6]  Mark S. Shephard,et al.  Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .

[7]  D. A. Field Qualitative measures for initial meshes , 2000 .

[8]  M. Z. Dauhoo,et al.  An analysis of the properties of the variants of Newton's method with third order convergence , 2006, Appl. Math. Comput..

[9]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[10]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[11]  S. Lo Volume discretization into tetrahedra-I. Verification and orientation of boundary surfaces , 1991 .

[12]  P. George,et al.  Automatic mesh generator with specified boundary , 1991 .

[13]  Yongjie Zhang,et al.  Adaptive and Quality Quadrilateral/Hexahedral Meshing from Volumetric Data. , 2006, Computer methods in applied mechanics and engineering.

[14]  R E Schofield,et al.  French and british studies. , 1978, Science.

[15]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[16]  Richard L. Gaffney,et al.  Euler calculations for wings using Cartesian grids , 1987 .

[17]  Carl Ollivier-Gooch,et al.  Tetrahedral mesh improvement using swapping and smoothing , 1997 .

[18]  Kenji Shimada,et al.  An Angle-Based Approach to Two-Dimensional Mesh Smoothing , 2000, IMR.

[19]  Ted D. Blacker Meeting the Challenge for Automated Conformal Hexahedral Meshing , 2000 .

[20]  Paresh Parikh,et al.  Interactive generation of unstructured grids for three dimensional problems , 1988 .

[21]  J. Robinson Some new distortion measures for quadrilaterals , 1987 .

[22]  Takanori Uchida,et al.  Numerical simulation of atmospheric flow over complex terrain , 1999 .

[23]  T. Blacker,et al.  Unconstrained plastering—Hexahedral mesh generation via advancing‐front geometry decomposition , 2010 .

[24]  Rafael Montenegro,et al.  Efficient Strategies for Adaptive 3-D Mesh Generation Over Complex Orography , 2002, Neural Parallel Sci. Comput..

[25]  Mahmoud H. Alrefaei,et al.  A simulated annealing technique for multi-objective simulation optimization , 2009, Appl. Math. Comput..

[26]  Carl Ollivier-Gooch,et al.  A comparison of tetrahedral mesh improvement techniques , 1996 .

[27]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[28]  T. Baker Automatic mesh generation for complex three-dimensional regions using a constrained Delaunay triangulation , 1989, Engineering with Computers.

[29]  John H. Holland,et al.  When will a Genetic Algorithm Outperform Hill Climbing , 1993, NIPS.

[30]  Matthew L. Staten,et al.  An Approach to Combined Laplacian and Optimization-Based Smoothing for Triangular, Quadrilateral, and Quad-Dominant Meshes , 1998, IMR.

[31]  Mark S. Shephard,et al.  Automatic three-dimensional mesh generation by the finite octree technique , 1984 .

[32]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[33]  Timothy J. Tautges,et al.  THE WHISKER WEAVING ALGORITHM: A CONNECTIVITY‐BASED METHOD FOR CONSTRUCTING ALL‐HEXAHEDRAL FINITE ELEMENT MESHES , 1996 .

[34]  T. Blacker,et al.  Seams and wedges in plastering: A 3-D hexahedral mesh generation algorithm , 1993, Engineering with Computers.

[35]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[36]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..

[37]  C. Lee,et al.  A new scheme for the generation of a graded quadrilateral mesh , 1994 .