A generalized Schmidt subspace theorem for closed subschemes

abstract:We prove a generalized version of Schmidt's subspace theorem for closed subschemes in general position in terms of suitably defined Seshadri constants with respect to a fixed ample divisor. Our proof builds on previous work of Evertse and Ferretti, Corvaja and Zannier, and others, and uses standard techniques from algebraic geometry such as notions of positivity, blowing-ups and direct image sheaves. As an application, we recover a higher-dimensional Diophantine approximation theorem of K.~F.~Roth-type due to D.~McKinnon and M.~Roth with a significantly shortened proof, while simultaneously extending the scope of the use of Seshadri constants in this context in a natural way.

[1]  Charles W. Wampler,et al.  Interactions of Classical and Numerical Algebraic Geometry , 2009 .

[2]  Paul Vojta Diophantine Approximations and Value Distribution Theory , 1987 .

[3]  R. Ferretti Mumford's Degree of Contact and Diophantine Approximations , 1998, Compositio Mathematica.

[4]  Paul Vojta A Refinement of Schmidt's Subspace Theorem , 1989 .

[5]  David McKinnon,et al.  Seshadri constants, diophantine approximation, and Roth’s theorem for arbitrary varieties , 2013, 1306.2976.

[6]  Katsutoshi Yamanoi Algebro-geometric version of Nevanlinna’s lemma on logarithmic derivative and applications , 2004, Nagoya Mathematical Journal.

[7]  Robert Lazarsfeld,et al.  Positivity in algebraic geometry , 2004 .

[8]  Hans Peter Schlickewei Die p-adische Verallgemeinerung des Satzes von Thue-Siegel-Roth-Schmidt. , 1976 .

[9]  Julietzu-Yueh Wang,et al.  A subspace theorem for subvarieties , 2017 .

[10]  A. Levin On the Schmidt subspace theorem for algebraic points , 2012, 1210.2983.

[11]  J. Evertse,et al.  Diophantine inequalities on projective varieties , 2002 .

[12]  R. Lazarsfeld Classical setting : line bundles and linear series , 2004 .

[13]  Paul Vojta,et al.  A birational Nevanlinna constant and its consequences , 2016, American Journal of Mathematics.

[14]  U. Zannier,et al.  On a general Thue's equation , 2004 .

[15]  M. Ru Holomorphic curves into algebraic varieties , 2009 .

[16]  Wolfgang M. Schmidt,et al.  Norm Form Equations , 1972 .

[17]  N. Grieve Diophantine approximation constants for varieties over function fields , 2015, 1511.07704.

[18]  Bernard Teissier,et al.  Clôture intégrale des idéaux et équisingularité , 2008 .

[19]  A. Levin,et al.  On the degeneracy of integral points and entire curves in the complement of nef effective divisors , 2019, 1907.00896.

[20]  R. C. Mason Norm form equations I , 1986 .

[21]  N. Grieve On arithmetic general theorems for polarized varieties. , 2017, 1712.04367.

[22]  R. Lazarsfeld,et al.  Positivity and complexity of ideal sheaves , 2000, math/0007023.

[23]  B. Teissier,et al.  Cl\^oture int\'egrale des id\'eaux et \'equisingularit\'e , 2008, 0803.2369.

[24]  T. Willmore Algebraic Geometry , 1973, Nature.

[25]  Joseph H. Silverman,et al.  Arithmetic distance functions and height functions in diophantine geometry , 1987 .

[26]  Wolfgang M. Schmidt,et al.  Simultaneous approximation to algebraic numbers by rationals , 1970 .

[27]  P. Autissier Sur la non-densité des points entiers , 2011 .

[28]  Seshadri constants, gonality of space curves, and restriction of stable bundles , 1993, alg-geom/9303006.

[29]  H. P. Schlickewei On products of special linear forms with algebraic coefficients , 1976 .