Using Probabilistic Unsupervised Neural Method for Lithofacies Identification

This paper presents a probabilistic unsupervised neural method in order to construct the lithofacies of the wells HM2 and HM3 situated in the south of Algeria (Sahara). Our objective is to facilitate the experts' work in geological domain and to allow them to obtain the structure and the nature of lands around the drilling quickly. For this, we propose the use of the Self-Organized Map (SOM) of Kohonen. We introduce a set of labeled log's data in some points of the hole. Once the obtained map is the best deployed one (the neuronal network is well adapted to the data of the wells), a probabilistic formalism is introduced to enhance the classification process. Our system provides a lithofacies of the concerned hole in an aspect easy to read by a geology expert who identifies the potential for oil production at a given source and so forms the basis for estimating the financial returns and economic benefits. The obtained results show that the approach is robust and effective.

[1]  Fatiha Anouar Modélisation probabilistes des cartes auto-organisées : Application en classification et en régression , 1996 .

[2]  Yong Haur Tay,et al.  Comparison of Fuzzy ARTMAP and MLP Neural Networks for Hand-Written Character Recognition , 1997 .

[3]  G. Dreyfus,et al.  Réseaux de neurones - Méthodologie et applications , 2002 .

[4]  Fred Aminzadeh,et al.  Applications of AI and soft computing for challenging problems in the oil industry , 2005 .

[5]  Alain Rabaute,et al.  Obtenir une représentation en continu de la lithologie et de la minéralogie. Exemples d'application du traitement statistique de données de diagraphie aux structures sédimentaires en régime de convergence de plaques (Leg ODP 134, 156 et 160) , 1998 .

[6]  F. Germinet,et al.  Generalized fractal dimensions: equivalences and basic properties , 2001 .

[7]  Steve R. White,et al.  Trading accuracy for speed in parallel simulated annealing with simultaneous moves , 2000, Parallel Comput..

[8]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[9]  Matthias Blume,et al.  An Efficient Mapping of Fuzzy ART onto a Neural Architecture , 1997, Neural Networks.

[10]  Adegbenga Oluwafemi Esan High resolution sequence stratigraphic and reservoir characterization studies of D-07, D-08 and E-01 sands, Block 2 Meren field, offshore Niger Delta , 2004 .

[11]  Frédéric Alexandre,et al.  Unsupervised connectionist algorithms for clustering an environmental data set: A comparison , 1999, Neurocomputing.

[12]  Kok W. Wong A neural fuzzy approach for well log and hydrocyclone data interpretation. , 1999 .