Hypergraphs with independent neighborhoods

For each k ≥ 2, let ρk ∈ (0, 1) be the largest number such that there exist k-uniform hypergraphs on n vertices with independent neighborhoods and (ρk + o(1))(kn) edges as n → ∞. We prove that ρk = 1 − 2logk/k + Θ(log log k/k) as k → ∞. This disproves a conjecture of Füredi and the last two authors.

[1]  Vojtech Rödl,et al.  Lower bounds for Turán's problem , 1985, Graphs Comb..

[2]  Yi Zhao,et al.  Co-degree density of hypergraphs , 2007, J. Comb. Theory, Ser. A.

[3]  P. Erdos,et al.  Studies in Pure Mathematics , 1983 .

[4]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[5]  Zoltán Füredi,et al.  A new generalization of the Erdős-Ko-Rado theorem , 1983, Comb..

[6]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[7]  Linyuan Lu An Upper Bound for the Turr an Number T 3 (n; 4) , 1999 .

[8]  Béla Bollobás,et al.  Three-graphs without two triples whose symmetric difference is contained in a third , 1974, Discret. Math..

[9]  Béla Bollobás,et al.  Random Graphs , 1985 .

[10]  P. Erdös On an extremal problem in graph theory , 1970 .

[11]  Oleg Pikhurko An exact Turán result for the generalized triangle , 2008, Comb..

[12]  László Pyber,et al.  A new generalization of the Erdös-Ko-Rado theorem , 1986, J. Comb. Theory A.

[13]  A. F. Sidorenko,et al.  The maximal number of edges in a homogeneous hypergraph containing no prohibited subgraphs , 1987 .

[14]  Peter Keevash A hypergraph regularity method for generalized Turán problems , 2009, Random Struct. Algorithms.

[15]  Miklós Simonovits,et al.  The Tura'n Density of the Hypergraph {abc, ade, bde, cde} , 2003, Electron. J. Comb..

[16]  Yi Zhao,et al.  Codegree problems for projective geometries , 2007, J. Comb. Theory, Ser. B.

[17]  Dhruv Mubayi The co-degree density of the Fano plane , 2005, J. Comb. Theory, Ser. B.

[18]  M. Simonovits,et al.  On Triple Systems with Independent Neighbourhoods , 2005, Combinatorics, Probability and Computing.

[19]  Ki Hang Kim,et al.  On a problem of Turán , 1983 .

[20]  Vojtech Rödl,et al.  On the Turán Number of Triple Systems , 2002, J. Comb. Theory, Ser. A.

[21]  Dhruv Mubayi,et al.  Stability theorems for cancellative hypergraphs , 2004, J. Comb. Theory, Ser. B.

[22]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[23]  Peter Keevash,et al.  A hypergraph regularity method for generalized Turán problems , 2008 .

[24]  W. L. Nicholson,et al.  On the Normal Approximation to the Hypergeometric Distribution , 1956 .

[25]  Zoltán Füredi,et al.  Quadruple systems with independent neighborhoods , 2008, J. Comb. Theory, Ser. A.

[26]  Vojtech Rödl,et al.  A Dirac-Type Theorem for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[27]  Zoltán Füredi,et al.  Extremal problems whose solutions are the blowups of the small witt-designs , 1989, J. Comb. Theory, Ser. A.