Retrieval of tropospheric profiles from IR emission spectra: preliminary results with the DBIS

Recently, Smith and collaborators from University of Wisconsin-Madison have clearly established the possibilities of sounding tropospheric temperature and water vapor profiles with a ground-based uplooking interferometer. With the same perspective but for somewhat different applications, the Defence Research Establishment Valcartier (DREV) has initiated a project with the aim of exploring the many possible avenues of similar approaches. DREV, in collaboration with BOMEM (Quebec, Canada), has developed an instrument referred to as the Double Beam Interferometer Sounder (DBIS). This sounder has been conceived to match the needs encountered in many remote sensing scenarios: slant path capability, small field of view, very wide spectral coverage, and high spectral resolution. Preliminary tests with the DBIS have shown sufficient accuracy for remote sensing applications. In a series of field measurements, jointly organized by the Geophysics Directorate/PL, Hanscom AFB, and DREV, the instrument has been run in a wide variety of sky conditions. Several atmospheric emission spectra recorded with the sounder have been compared to calculations with FASCODE and MODTRAN models. The quality of measurement-model comparisons has prompted the development of an inversion algorithm based on these codes. The purpose of this paper is to report the recent progress achieved in this research. First, the design and operation of the instrument are reviewed. Second, recent field measurements of atmospheric emission spectra are analyzed and compared to models predictions. Finally, the simultaneous retrieval approach selected for the inversion of DBIS spectra to obtain temperature and water vapor profiles is described and preliminary results are presented.