Abnormal sub-riemannian geodesics : Morse index and rigidity

Abstract Considering a smooth manifold Μ provided with a sub-Riemannian structure, i.e. with Riemannian metric and nonintegrable vector distribution, we set a problem of finding for two given points q0, q1 ∈ Μ a length minimizer among Lipschitzian paths tangent to the vector distribution (admissible) and connecting these points. Extremals of this variational problem are called sub-Riemannian geodesics and we single out the abnormal sub-Riemannian geodesics, which correspond to the vanishing Lagrange multiplier for the length functional. These abnormal geodesics are not related to the Riemannian structure but only to the vector distribution and, in fact, are singular points in the set of admissible paths connecting q0 and q1. Developing the Legendre-Jacobi-Morse-type theory of 2nd variation for abnormal geodesics we investigate some of their specific properties such as weak minimality and rigidity-isolatedness in the space of admissible paths connecting the two given points.

[1]  A V Saryčev,et al.  THE INDEX OF THE SECOND VARIATION OF A CONTROL SYSTEM , 1982 .

[2]  Bernard Bonnard,et al.  Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal , 1993 .

[3]  L. Young Lectures on the Calculus of Variations and Optimal Control Theory , 1980 .

[4]  H. Hermes,et al.  Nonlinear Controllability via Lie Theory , 1970 .

[5]  Andrei A. Agrachev,et al.  Strong minimality of abnormal geodesics for 2-distributions , 1995 .

[6]  Andrei A. Agrachev,et al.  On Abnormal Extremals for Lagrange Variational Problems , 1995 .

[7]  A. Krener The High Order Maximal Principle and Its Application to Singular Extremals , 1977 .

[8]  Andrei A. Agrachev,et al.  Quadratic mappings in geometric control theory , 1990 .

[9]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[10]  R. Gamkrelidze,et al.  THE EXPONENTIAL REPRESENTATION OF FLOWS AND THE CHRONOLOGICAL CALCULUS , 1979 .

[11]  H. Gardner Moyer,et al.  3 Singular Extremals , 1967 .

[12]  Wensheng Liu,et al.  Shortest paths for sub-Riemannian metrics on rank-two distributions , 1996 .

[13]  Harold Levine,et al.  Singularities of differentiable mappings , 1971 .

[14]  Shlomo Sternberg,et al.  Geometric Asymptotics, Revised edition , 1977 .

[15]  B. Goh Necessary Conditions for Singular Extremals Involving Multiple Control Variables , 1966 .

[16]  A. Agrachev Topology of quadratic maps and hessians of smooth maps , 1990 .

[17]  Marston Morse The Calculus of Variations in the Large , 1934 .