Abnormal sub-riemannian geodesics : Morse index and rigidity
暂无分享,去创建一个
[1] A V Saryčev,et al. THE INDEX OF THE SECOND VARIATION OF A CONTROL SYSTEM , 1982 .
[2] Bernard Bonnard,et al. Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal , 1993 .
[3] L. Young. Lectures on the Calculus of Variations and Optimal Control Theory , 1980 .
[4] H. Hermes,et al. Nonlinear Controllability via Lie Theory , 1970 .
[5] Andrei A. Agrachev,et al. Strong minimality of abnormal geodesics for 2-distributions , 1995 .
[6] Andrei A. Agrachev,et al. On Abnormal Extremals for Lagrange Variational Problems , 1995 .
[7] A. Krener. The High Order Maximal Principle and Its Application to Singular Extremals , 1977 .
[8] Andrei A. Agrachev,et al. Quadratic mappings in geometric control theory , 1990 .
[9] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[10] R. Gamkrelidze,et al. THE EXPONENTIAL REPRESENTATION OF FLOWS AND THE CHRONOLOGICAL CALCULUS , 1979 .
[11] H. Gardner Moyer,et al. 3 Singular Extremals , 1967 .
[12] Wensheng Liu,et al. Shortest paths for sub-Riemannian metrics on rank-two distributions , 1996 .
[13] Harold Levine,et al. Singularities of differentiable mappings , 1971 .
[14] Shlomo Sternberg,et al. Geometric Asymptotics, Revised edition , 1977 .
[15] B. Goh. Necessary Conditions for Singular Extremals Involving Multiple Control Variables , 1966 .
[16] A. Agrachev. Topology of quadratic maps and hessians of smooth maps , 1990 .
[17] Marston Morse. The Calculus of Variations in the Large , 1934 .