The molecular genetics of red and green color vision in mammals.

To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the "true" red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia).

[1]  N Okada,et al.  Phylogenetic position of guinea pigs revisited. , 1997, Molecular biology and evolution.

[2]  P. Chomczyński,et al.  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. , 1987, Analytical biochemistry.

[3]  G. H. Jacobs,et al.  Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis) , 1987, Vision Research.

[4]  S. Kawamura,et al.  Regeneration of ultraviolet pigments of vertebrates , 1998, FEBS letters.

[5]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[6]  J. Nathans,et al.  Cloning and expression of goldfish opsin sequences. , 1993, Biochemistry.

[7]  J Nathans,et al.  ROLE OF HYDROXYL‐BEARING AMINO ACIDS IN DIFFERENTIALLY TUNING THE ABSORPTION SPECTRA OF THE HUMAN RED AND GREEN CONE PIGMENTS , 1993, Photochemistry and photobiology.

[8]  G. Berkowitz,et al.  Preparation of T-over-hang vectors with high PCR product cloning efficiency. , 1996, BioTechniques.

[9]  E. Zrenner,et al.  The spectral sensitivity of dark- and light-adapted cat retinal ganglion cells , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  S. Yokoyama,et al.  Genetic analyses of the green visual pigments of rabbit (Oryctolagus cuniculus) and rat (Rattus norvegicus). , 1998, Gene.

[11]  S. Yokoyama,et al.  Convergent evolution of the red- and green-like visual pigment genes in fish, Astyanax fasciatus, and human. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[12]  H. Wilkens Evolution and Genetics of Epigean and Cave Astyanax fasciatus (Characidae, Pisces) , 1988 .

[13]  G H Jacobs,et al.  Electroretinogram measurements of cone spectral sensitivity in dichromatic monkeys. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[14]  J. Mollon,et al.  Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  J. D. Mollon,et al.  Polymorphism of visual pigments in a callitrichid monkey , 1988, Vision Research.

[16]  G. H. Jacobs,et al.  Retinal receptors in rodents maximally sensitive to ultraviolet light , 1991, Nature.

[17]  T. Sakmar,et al.  Introduction of hydroxyl-bearing amino acids causes bathochromic spectral shifts in rhodopsin. Amino acid substitutions responsible for red-green color pigment spectral tuning. , 1992, The Journal of biological chemistry.

[18]  S. Pelletier,et al.  Design, chemical synthesis, and expression of genes for the three human color vision pigments. , 1991, Biochemistry.

[19]  S. Yokoyama,et al.  Cloning and expression of the red visual pigment gene of goat (Capra hircus). , 1997, Gene.

[20]  F. I. Hárosi An analysis of two spectral properties of vertebrate visual pigments , 1994, Vision Research.

[21]  J. Mollon,et al.  Molecular evolution of trichromacy in primates , 1998, Vision Research.

[22]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[23]  M. Nei,et al.  Color vision of ancestral organisms of higher primates. , 1997, Molecular biology and evolution.

[24]  Jeremy Nathans,et al.  Absorption spectra of human cone pigments , 1992, Nature.

[25]  J. Felsenstein Confidence Limits on Phylogenies With a Molecular Clock , 1985 .

[26]  D. Oprian,et al.  Molecular determinants of human red/green color discrimination , 1994, Neuron.

[27]  J. Nathans,et al.  Mechanisms of spectral tuning in the mouse green cone pigment. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  G. H. Jacobs,et al.  Photopigment basis for dichromatic color vision in cows, goats, and sheep , 1998, Visual Neuroscience.

[29]  S. R. Searle Linear Models , 1971 .

[30]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[31]  S. Yokoyama,et al.  Molecular genetic basis of adaptive selection: examples from color vision in vertebrates. , 1997, Annual review of genetics.

[32]  G. H. Jacobs,et al.  Polymorphism of the middle wavelength cone in two species of south american monkey: Cebus apella and callicebus moloch , 1987, Vision Research.

[33]  Jay Neitz,et al.  Genetic basis of polymorphism in the color vision of platyrrhine monkeys , 1993, Vision Research.

[34]  Z. Yang,et al.  Models of amino acid substitution and applications to mitochondrial protein evolution. , 1998, Molecular biology and evolution.

[35]  S. Yokoyama,et al.  The "five-sites" rule and the evolution of red and green color vision in mammals. , 1998, Molecular biology and evolution.

[36]  S. Yokoyama,et al.  Initial mutational steps toward loss of opsin gene function in cavefish. , 1995, Molecular biology and evolution.

[37]  M. Nei,et al.  Dynamics of gene differentiation between incompletely isolated populations of unequal sizes. , 1974, Theoretical population biology.

[38]  J. Lythgoe,et al.  The spectral clustering of visual pigments. , 1965, Vision research.

[39]  D M Hunt,et al.  The visual pigments of the bottlenose dolphin (Tursiops truncatus) , 1998, Visual Neuroscience.

[40]  H. Khorana,et al.  Expression of a bovine rhodopsin gene in Xenopus oocytes: demonstration of light-dependent ionic currents. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[41]  G H Jacobs,et al.  Spectral tuning of pigments underlying red-green color vision. , 1991, Science.

[42]  Jay Neitz,et al.  Trichromatic colour vision in New World monkeys , 1996, Nature.

[43]  J. Winderickx,et al.  Polymorphism in red photopigment underlies variation in colour matching , 1992, Nature.

[44]  J. D. Mollon,et al.  The relationship between cone pigments and behavioural sensitivity in a new world monkey (Callithrix jacchus jacchus) , 1992, Vision Research.

[45]  D. Hewett‐Emmett,et al.  Molecular Genetics of Spectral Tuning in New World Monkey Color Vision , 1998, Journal of Molecular Evolution.

[46]  M. Nei,et al.  The neighbor-joining method , 1987 .

[47]  G H Jacobs,et al.  Inheritance of color vision in a New World monkey (Saimiri sciureus). , 1987, Proceedings of the National Academy of Sciences of the United States of America.