Algorithms for Massive Data Problems: Streaming, Sketching, and Sampling

[1]  Kun He,et al.  Hidden Community Detection in Social Networks , 2017, Inf. Sci..

[2]  Armin Biere,et al.  SAT Race 2015 , 2016, Artif. Intell..

[3]  Sanjeev Arora,et al.  Computing a Nonnegative Matrix Factorization - Provably , 2016, SIAM J. Comput..

[4]  Fionn Murtagh,et al.  Handbook of Cluster Analysis , 2015 .

[5]  Kun He,et al.  Detecting Overlapping Communities from Local Spectral Subspaces , 2015, 2015 IEEE International Conference on Data Mining.

[6]  Kun He,et al.  Uncovering the Small Community Structure in Large Networks: A Local Spectral Approach , 2015, WWW.

[7]  Kun He,et al.  Revealing Multiple Layers of Hidden Community Structure in Networks , 2015, ArXiv.

[8]  Chiranjib Bhattacharyya,et al.  A provable SVD-based algorithm for learning topics in dominant admixture corpus , 2014, NIPS.

[9]  Maria-Florina Balcan,et al.  Robust hierarchical clustering , 2013, J. Mach. Learn. Res..

[10]  Maria-Florina Balcan,et al.  Clustering under approximation stability , 2013, JACM.

[11]  Sanjeev Arora,et al.  The Multiplicative Weights Update Method: a Meta-Algorithm and Applications , 2012, Theory Comput..

[12]  David B. Dunson,et al.  Probabilistic topic models , 2011, KDD '11 Tutorials.

[13]  Benny Sudakov,et al.  The phase transition in random graphs: A simple proof , 2012, Random Struct. Algorithms.

[14]  Mark Braverman,et al.  Finding Endogenously Formed Communities , 2012, SODA.

[15]  Amin Coja-Oghlan,et al.  On the solution‐space geometry of random constraint satisfaction problems , 2011, Random Struct. Algorithms.

[16]  Francis R. Bach,et al.  Online Learning for Latent Dirichlet Allocation , 2010, NIPS.

[17]  Allan Sly,et al.  Computational Transition at the Uniqueness Threshold , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[18]  Ankur Moitra,et al.  Settling the Polynomial Learnability of Mixtures of Gaussians , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[19]  Maria-Florina Balcan,et al.  A discriminative model for semi-supervised learning , 2010, J. ACM.

[20]  Adam N. Elmachtoub,et al.  From Random Polygon to Ellipse: An Eigenanalysis , 2010, SIAM Rev..

[21]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[22]  Sanjoy Dasgupta,et al.  Two faces of active learning , 2011, Theor. Comput. Sci..

[23]  Santosh S. Vempala,et al.  Spectral Algorithms , 2009, Found. Trends Theor. Comput. Sci..

[24]  Robert D. Nowak,et al.  Multi-Manifold Semi-Supervised Learning , 2009, AISTATS.

[25]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[26]  Ravi Kannan,et al.  A New Probability Inequality Using Typical Moments and Concentration Results , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[27]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[28]  Santosh S. Vempala,et al.  A discriminative framework for clustering via similarity functions , 2008, STOC.

[29]  M. Bayati,et al.  Max-Product for Maximum Weight Matching: Convergence, Correctness, and LP Duality , 2008, IEEE Transactions on Information Theory.

[30]  Vahab S. Mirrokni,et al.  Local Computation of PageRank Contributions , 2007, Internet Math..

[31]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[32]  Sanjoy Dasgupta,et al.  A Probabilistic Analysis of EM for Mixtures of Separated, Spherical Gaussians , 2007, J. Mach. Learn. Res..

[33]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[34]  P. Balister,et al.  BRANCHING PROCESSES , 2006 .

[35]  U. Helmke,et al.  A Newton-like method for solving rank constrained linear matrix inequalities , 2006, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[36]  Petros Drineas,et al.  Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication , 2006, SIAM J. Comput..

[37]  Petros Drineas,et al.  FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .

[38]  Maria-Florina Balcan,et al.  Agnostic active learning , 2006, J. Comput. Syst. Sci..

[39]  Jon M. Kleinberg,et al.  On learning mixtures of heavy-tailed distributions , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[40]  Devavrat Shah,et al.  Maximum weight matching via max-product belief propagation , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[41]  W. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[42]  Yishay Mansour,et al.  From External to Internal Regret , 2005, J. Mach. Learn. Res..

[43]  Dimitris Achlioptas,et al.  On Spectral Learning of Mixtures of Distributions , 2005, COLT.

[44]  Santosh S. Vempala,et al.  The Random Projection Method , 2005, DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

[45]  Sanjeev Arora,et al.  LEARNING MIXTURES OF SEPARATED NONSPHERICAL GAUSSIANS , 2005, math/0503457.

[46]  Victoria Stodden,et al.  When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts? , 2003, NIPS.

[47]  Rémi Gribonval,et al.  Sparse decompositions in "incoherent" dictionaries , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[48]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[49]  Y. Azar,et al.  Optimal oblivious routing in polynomial time , 2003, STOC '03.

[50]  Yuval Peres,et al.  The threshold for random k-SAT is 2k (ln 2 - O(k)) , 2003, STOC '03.

[51]  Peter L. Bartlett,et al.  Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..

[52]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Riccardo Zecchina,et al.  Survey propagation: An algorithm for satisfiability , 2002, Random Struct. Algorithms.

[54]  D. Spielman The Smoothed Analysis of Algorithms , 2002, FCT.

[55]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[56]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[57]  Frank McSherry,et al.  Spectral partitioning of random graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[58]  Shang-Hua Teng,et al.  Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.

[59]  Zoubin Ghahramani,et al.  An Introduction to Hidden Markov Models and Bayesian Networks , 2001, Int. J. Pattern Recognit. Artif. Intell..

[60]  J. Hopcroft,et al.  Are randomly grown graphs really random? , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  B. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[62]  William T. Freeman,et al.  On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs , 2001, IEEE Trans. Inf. Theory.

[63]  Santosh S. Vempala,et al.  On clusterings-good, bad and spectral , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[64]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[65]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[66]  Thorsten Joachims,et al.  Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.

[67]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[68]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[69]  Alan M. Frieze,et al.  Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[70]  John Shawe-Taylor,et al.  Structural Risk Minimization Over Data-Dependent Hierarchies , 1998, IEEE Trans. Inf. Theory.

[71]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[72]  Geoffrey Zweig,et al.  Syntactic Clustering of the Web , 1997, Comput. Networks.

[73]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[74]  Manfred K. Warmuth,et al.  How to use expert advice , 1997, JACM.

[75]  Alan M. Frieze,et al.  Analysis of Two Simple Heuristics on a Random Instance of k-SAT , 1996, J. Algorithms.

[76]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[77]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[78]  S. Janson,et al.  The Birth of the Giant Component , 1993, Random Struct. Algorithms.

[79]  Sebastian Thrun,et al.  Lifelong robot learning , 1993, Robotics Auton. Syst..

[80]  Bruce A. Reed,et al.  Mick gets some (the odds are on his side) (satisfiability) , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[81]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[82]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[83]  Richard M. Karp,et al.  The Transitive Closure of a Random Digraph , 1990, Random Struct. Algorithms.

[84]  Manfred K. Warmuth,et al.  The weighted majority algorithm , 1989, 30th Annual Symposium on Foundations of Computer Science.

[85]  David Haussler,et al.  Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.

[86]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, WG.

[87]  David Haussler,et al.  Occam's Razor , 1987, Inf. Process. Lett..

[88]  Ming-Te Chao,et al.  Probabilistic Analysis of Two Heuristics for the 3-Satisfiability Problem , 1986, SIAM J. Comput..

[89]  N. Alon Eigenvalues and expanders , 1986, Comb..

[90]  Philippe Flajolet,et al.  Probabilistic Counting Algorithms for Data Base Applications , 1985, J. Comput. Syst. Sci..

[91]  Béla Bollobás,et al.  Random Graphs, Second Edition , 2001, Cambridge Studies in Advanced Mathematics.

[92]  L. Valiant,et al.  A theory of the learnable , 1984, CACM.

[93]  Jayadev Misra,et al.  Finding Repeated Elements , 1982, Sci. Comput. Program..

[94]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[95]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[96]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[97]  M. Satterthwaite Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions , 1975 .

[98]  A. Gibbard Manipulation of Voting Schemes: A General Result , 1973 .

[99]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[100]  Maria-Florina Balcan,et al.  Active Learning – Modern Learning Theory , 2015 .

[101]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2009 .

[102]  Francesco Masulli,et al.  A survey of kernel and spectral methods for clustering , 2008, Pattern Recognit..

[103]  Henry A. Kautz,et al.  Satisfiability Solvers , 2008, Handbook of Knowledge Representation.

[104]  Yoshua Bengio Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[105]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[106]  R. Motwani,et al.  Chapter 31 – Approximate Frequency Counts over Data Streams , 2002, VLDB 2002.

[107]  Jon M. Kleinberg,et al.  An Impossibility Theorem for Clustering , 2002, NIPS.

[108]  Alan M. Frieze,et al.  Clustering in large graphs and matrices , 1999, SODA '99.

[109]  A. Andrew,et al.  Emergence of Scaling in Random Networks , 1999 .

[110]  Anupam Gupta,et al.  An elementary proof of the Johnson-Lindenstrauss Lemma , 1999 .

[111]  Rajeev Motwani,et al.  What can you do with a Web in your Pocket? , 1998, IEEE Data Eng. Bull..

[112]  Béla Bollobás,et al.  Threshold functions , 1987, Comb..

[113]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..

[114]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[115]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[116]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[117]  N. Z. Shor Convergence rate of the gradient descent method with dilatation of the space , 1970 .

[118]  H. D. Block The perceptron: a model for brain functioning. I , 1962 .

[119]  K. Florek,et al.  Sur la liaison et la division des points d'un ensemble fini , 1951 .

[120]  K. Arrow,et al.  You have printed the following article : A Difficulty in the Concept of Social Welfare , 2022 .