Optimal measurement setup for damage detection in piezoelectric plates

Abstract An optimization of the excitation–measurement configuration is proposed for the characterization of damage in PZT-4 piezoelectric plates, from a numerical point of view. To perform such an optimization, a numerical method to determine the location and extent of defects in piezoelectric plates is developed by combining the solution of an identification inverse problem, using genetic algorithms and gradient-based methods to minimize a cost functional, and using an optimized finite element code and meshing algorithm. In addition, a semianalytical estimate of the probability of detection is developed and validated, which provides a flexible criterion to optimize the experimental design. The experimental setup is optimized upon several criteria: maximizing the probability of detection against noise effects, ensuring robust search algorithm convergence and increasing the sensitivity to the presence of the defect. The measurement of voltage ϕ is concluded to provide the highest identifiability, combined with an excitation of the specimen by a mechanical traction transverse to the polarization direction. Sufficient accuracy is predicted for the damage location and sizing under realistic noise levels.

[1]  L. Råde,et al.  Mathematics handbook for science and engineering , 1995 .

[2]  Rafael Gallego,et al.  Probabilistic inverse problem and system uncertainties for damage detection in piezoelectrics , 2009 .

[3]  Zhigang Suo,et al.  Fracture mechanics for piezoelectric ceramics , 1992 .

[4]  Pei-Ling Liu,et al.  PARAMETRIC IDENTIFICATION OF TRUSS STRUCTURES BY USING TRANSIENT RESPONSE , 1996 .

[5]  Joseph A. C. Delaney Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.

[6]  Andrei Constantinescu,et al.  On the determination of elastic coefficients from indentation experiments , 2000 .

[7]  Horacio Sosa,et al.  New developments concerning piezoelectric materials with defects , 1996 .

[8]  Horacio Sosa,et al.  Numerical investigations of field-defect interactions in piezoelectric ceramics , 2007 .

[9]  A.,et al.  Inverse Problems = Quest for Information , 2022 .

[10]  Maenghyo Cho,et al.  Dynamic analysis of composite plate with multiple delaminations based on higher-order zigzag theory , 2005 .

[11]  C. M. Mota Soares,et al.  Parameter estimation in active plate structures using gradient optimisation and neural networks , 2006 .

[12]  N. Pagano,et al.  Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates , 1970 .

[13]  S. Y. Lee,et al.  Optimized damage detection of steel plates from noisy impact test , 2006 .

[14]  Rafael Gallego,et al.  Identification of cracks and cavities using the topological sensitivity boundary integral equation , 2004 .

[15]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[16]  R. Russell,et al.  Inverting piezoelectric measurements , 1997 .

[17]  Jamshid Ghaboussi,et al.  Genetic algorithm in structural damage detection , 2001 .

[18]  José Herskovits,et al.  Development of a finite element model for the identification of mechanical and piezoelectric properties through gradient optimisation and experimental vibration data , 2002 .

[19]  Z. Ou,et al.  Discussion of the Crack Face Electric Boundary Condition in Piezoelectric Fracture Mechanics , 2003 .

[20]  C. Sun,et al.  Fracture Criteria for Piezoelectric Ceramics , 1995 .

[21]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[22]  J. Emeterio,et al.  Evaluation of Piezoelectric Resonator Parameters Using an Artificial Intelligence Technique , 2004 .

[23]  N. J. Pagano,et al.  Exact solutions for rectangular bidirectional composites and sandwich plates : Journal of Composite Materials, Vol 4, pp 20 – 34 (January 1970) , 1970 .

[24]  R. McMeeking The energy release rate for a Griffith crack in a piezoelectric material , 2004 .

[25]  Barbara Kaltenbacher,et al.  PDE based determination of piezoelectric material tensors , 2006, European Journal of Applied Mathematics.

[26]  Cecilia Surace,et al.  An application of Genetic Algorithms to identify damage in elastic structures , 1996 .

[27]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[28]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[29]  Sang-Youl Lee,et al.  Defect identification in laminated composite structures by BEM from incomplete static data , 2005 .

[30]  Marc Bonnet,et al.  Inverse problems in elasticity , 2005 .

[31]  A Ramos,et al.  Estimation of some transducer parameters in a broadband piezoelectric transmitter by using an artificial intelligence technique. , 2004, Ultrasonics.

[32]  T. Tam,et al.  2D finite element mesh generation by medial axis subdivision , 1991 .

[33]  M. Kuna Finite element analyses of cracks in piezoelectric structures: a survey , 2006 .

[34]  Ayech Benjeddou,et al.  Advances in piezoelectric finite element modeling of adaptive structural elements: a survey , 2000 .

[35]  Herbert Balke,et al.  Fracture behavior of poled piezoelectric PZT under mechanical and electrical loads , 2005 .