High resolution electron microscopy of Ag-clusters in crystalline and non-crystalline morphologies grown inside superfluid helium nanodroplets.

We present a first investigation of structural properties of Ag clusters with a diameter of up to 5.5 nm grown inside superfluid helium nanodroplets (He(N)) and deposited on an amorphous C surface. With high resolution transmission electron microscope images we are able to show that in addition to the crystalline face centered cubic (fcc) structure, noncrystalline icosahedral (Ih), and decahedral (Dh) morphologies are grown. Relative abundances (56% fcc, 31% Dh, and 13% Ih) as well as the size distribution of each morphology (mean diameters d(fcc)=2.62(5) nm, d(Dh)=3.34(7) nm, and d(Ih)=3.93(2) nm) do not reflect the situation expected from pure energetic considerations, where small Ihs should be followed by medium sized Dhs and large fccs. Instead, kinetic factors seem to play an important role in the formation of these structures, as it appears to be the case for clusters formed by inert gas aggregation. Considering the low temperatures (0.37 K) and extremely high cooling rates, we discuss basic ideas that might lead to a qualitative picture of the cluster formation process inside He(N).

[1]  A. Ellis,et al.  Helium droplets: a new route to nanoparticles. , 2013, Faraday discussions.

[2]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[3]  M. Pi,et al.  Helium mediated deposition: modeling the He-TiO2(110)-(1×1) interaction potential and application to the collision of a helium droplet from density functional calculations. , 2012, The Journal of chemical physics.

[4]  W. Ernst,et al.  Doping helium nanodroplets with high temperature metals: formation of chromium clusters. , 2012, The Journal of chemical physics.

[5]  A. Vilesov,et al.  Traces of vortices in superfluid helium droplets. , 2012, Physical review letters.

[6]  A. Vilesov,et al.  Sizes of large He droplets. , 2011, The Journal of chemical physics.

[7]  Eleanor E. B. Campbell,et al.  Cluster-surface interaction: From soft landing to implantation , 2011 .

[8]  T. Märk,et al.  The submersion of sodium clusters in helium nanodroplets: identification of the surface → interior transition. , 2011, The Journal of chemical physics.

[9]  W. Ernst,et al.  Rb and Cs oligomers in different spin configurations on helium nanodroplets. , 2011, The journal of physical chemistry. A.

[10]  A. Halder,et al.  Photoabsorption of Ag(n)(N∼6-6000) nanoclusters formed in helium droplets: transition from compact to multicenter aggregation. , 2011, Physical review letters.

[11]  A. Vilesov,et al.  Surface deposition and imaging of large Ag clusters formed in He droplets. , 2011, The journal of physical chemistry. A.

[12]  Amanda S. Barnard,et al.  Modelling of nanoparticles: approaches to morphology and evolution , 2010 .

[13]  C. Callegari,et al.  Molecular beam magnetic resonance in doped helium nanodroplets. A setup for optically detected ESR/NMR in the presence of unresolved Zeeman splittings. , 2009, The journal of physical chemistry. A.

[14]  S. Mejía-Rosales,et al.  Size-Selected Ag Nanoparticles with Five-Fold Symmetry , 2009, Nanoscale research letters.

[15]  M. Slipchenko,et al.  Use of helium nanodroplets for assembly, transport, and surface deposition of large molecular and atomic clusters. , 2007, The Journal of chemical physics.

[16]  F. Stienkemeier,et al.  Formation and properties of metal clusters isolated in helium droplets. , 2007, Physical chemistry chemical physics : PCCP.

[17]  F. Baletto,et al.  Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects , 2005 .

[18]  C. M. Lindsay,et al.  Rotational and vibrational dynamics of ethylene in helium nanodroplets. , 2005, The Journal of chemical physics.

[19]  G. Scoles,et al.  Near-infrared spectroscopy of ethylene and ethylene dimer in superfluid helium droplets. , 2005, Journal of Chemical Physics.

[20]  J. Blackman,et al.  Magnetic and structural properties of isolated and assembled clusters , 2005 .

[21]  J. Toennies,et al.  Superfluid helium droplets: a uniquely cold nanomatrix for molecules and molecular complexes. , 2004, Angewandte Chemie.

[22]  Stephan Link,et al.  Optical properties and ultrafast dynamics of metallic nanocrystals. , 2003, Annual review of physical chemistry.

[23]  K. Sugawara,et al.  Population statistics of gold nanoparticle morphologies: direct determination by HREM observations , 2003 .

[24]  F. Baletto,et al.  Freezing of silver nanodroplets , 2002 .

[25]  Riccardo Ferrando,et al.  Crossover among structural motifs in transition and noble-metal clusters , 2002 .

[26]  C. Binns Nanoclusters deposited on surfaces , 2001 .

[27]  F. Baletto,et al.  Microscopic mechanisms of the growth of metastable silver icosahedra , 2001 .

[28]  Baletto,et al.  Reentrant morphology transition in the growth of free silver nanoclusters , 2000, Physical review letters.

[29]  Karo Michaelian,et al.  Structure and energetics of Ni, Ag, and Au nanoclusters , 1999 .

[30]  J. Toennies,et al.  Electron capture by large helium droplets , 1998 .

[31]  D. Ugarte,et al.  SIZE-INDEPENDENT FCC-TO-ICOSAHEDRAL STRUCTURAL TRANSITION IN UNSUPPORTED SILVER CLUSTERS : AN ELECTRON DIFFRACTION STUDY OF CLUSTERS PRODUCED BY INERT -GAS AGGREGATION , 1997 .

[32]  Federmann,et al.  Cold Metal Clusters: Helium Droplets as a Nanoscale Cryostat. , 1996, Physical review letters.

[33]  T. P. Martin Shells of atoms , 1996 .

[34]  L. Marks Experimental studies of small particle structures , 1994 .

[35]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[36]  J. Northby,et al.  Mass spectra and time‐of‐flight distributions of helium cluster beams , 1990 .

[37]  M. Morse Clusters of transition-metal atoms , 1986 .

[38]  L. Marks Surface structure and energetics of multiply twinned particles , 1984 .

[39]  Takayoshi Hayashi,et al.  Formation of Ultrafine Metal Particles by Gas-Evaporation Technique. IV. Crystal Habits of Iron and Fcc Metals, Al, Co, Ni, Cu, Pd, Ag, In, Au and Pb , 1977 .

[40]  Shozo Ino,et al.  Stability of Multiply Twinned Particles , 1969 .

[41]  H. Poppa Heterogeneous Nucleation of Bi and Ag on Amorphous Substrates (In Situ Electron Microscopy Studies) , 1967 .

[42]  A. Mackay A dense non-crystallographic packing of equal spheres , 1962 .

[43]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[44]  P. Stadelmann,et al.  Crystallographic structure of small gold particles studied by high-resolution electron microscopy , 1991 .

[45]  G. Sauerbrey,et al.  Use of quartz vibration for weighing thin films on a microbalance , 1959 .