Parallel Implementation and Scalability of Cloud Resolving EULAG Model

Progress in the development of the PetaScale implementation of the anelastic EULAG model combined with the warm-rain bulk and bin microphysics schemes, as well its application to multiscale cloud modeling, are presented. A new three-dimensional (3D) model domain decomposition is implemented to increase model performance and scalability. We investigate performance of the code on IBM BlueGene/L and Cray XT4/XE6 architectures. The scalability results show significant improvement of the new domain decomposition over the previous 2D decomposition used as the standard in many geophysical fluid flow models.

[1]  Christopher S. Bretherton,et al.  A new approach for 3D cloud‐resolving simulations of large‐scale atmospheric circulation , 2005 .

[2]  Wojciech W. Grabowski,et al.  The role of air turbulence in warm rain initiation , 2009 .

[3]  Bogdan Rosa,et al.  Turbulent collision efficiency of heavy particles relevant to cloud droplets , 2008 .

[4]  L. Margolin,et al.  Large-eddy simulations of convective boundary layers using nonoscillatory differencing , 1999 .

[5]  Wojciech W. Grabowski,et al.  An Improved Framework for Superparameterization. , 2004 .

[6]  Alex Povitsky,et al.  Parallelization of Pipelined Algorithms for Sets of Linear Banded Systems , 1999, J. Parallel Distributed Comput..

[7]  J. Szmelter,et al.  A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves , 2011 .

[8]  K. Beard Terminal Velocity and Shape of Cloud and Precipitation Drops Aloft , 1976 .

[9]  Wojciech W. Grabowski,et al.  Representation of turbulent mixing and buoyancy reversal in bulk cloud models , 2007 .

[10]  Piotr K. Smolarkiewicz,et al.  Towards petascale simulation of atmospheric circulations with soundproof equations , 2011 .

[11]  L. Margolin,et al.  A Class of Nonhydrostatic Global Models. , 2001 .

[12]  H. Morrison,et al.  Modeling Supersaturation and Subgrid-Scale Mixing with Two-Moment Bulk Warm Microphysics , 2008 .

[13]  Wojciech W. Grabowski,et al.  Diffusional and accretional growth of water drops in a rising adiabatic parcel: effects of the turbulent collision kernel , 2008 .

[14]  Mark A. Taylor,et al.  High-Resolution Mesh Convergence Properties and Parallel Efficiency of a Spectral Element Atmospheric Dynamical Core , 2005, Int. J. High Perform. Comput. Appl..

[15]  H. Morrison,et al.  Comparison of Bulk and Bin Warm-Rain Microphysics Models Using a Kinematic Framework , 2007 .

[16]  P. Smolarkiewicz,et al.  A multiscale anelastic model for meteorological research , 2002 .

[17]  Andrzej A. Wyszogrodzki,et al.  Activation of cloud droplets in bin-microphysics simulation of shallow convection , 2011 .

[18]  Nicholas J. Wright,et al.  WRF nature run , 2007, Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07).

[19]  Joanna Szmelter,et al.  An MPDATA‐based solver for compressible flows , 2008 .

[20]  J. Prusa,et al.  EULAG, a computational model for multiscale flows , 2008 .

[21]  Piotr K. Smolarkiewicz,et al.  Numerical Simulation of Cloud–Clear Air Interfacial Mixing: Effects on Cloud Microphysics , 2006 .

[22]  W. Grabowski Toward Cloud Resolving Modeling of Large-Scale Tropical Circulations: A Simple Cloud Microphysics Parameterization , 1998 .