In remote-sensing community, radiometric calibration of night-time light images has long been a problem, hindering change detection of images in different dates. Currently, an intercalibration model is regarded as the unique solution for the problem, but prior knowledge is needed to extract reference pixels with stable lights, which are hard to obtain in most of the applications. This study proposed an automatic algorithm to extract the reference pixels for convenient use of the intercalibration model, with an assumption that there are sufficient pixels with stable night-time lights in the multi-temporal images. To automatically extract the stable pixels from images in two dates, all pixels in the two dates were entered into a linear regression model, and the outliers viewed as suspected changed pixels were discarded iteratively. Consequently, some stable pixels were extracted and the intercalibration model was implemented. Annual night-time light composites in Beijing, China, from 1992 to 2010 were taken as the study material, and the results show that the multi-temporal calibrated night-time light data have higher correlation with gross domestic production (GDP) (R 2 = 0.8734) and urban population (UP) (R 2 = 0.9269) than those of the uncalibrated images (with the R 2 values 0.7963 and 0.8575, respectively). Furthermore, the data inconsistency from different night-time light satellites in the same year was reduced with the proposed algorithm. The results demonstrate that the proposed algorithm is effective in intercalibrating the Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) images automatically.
[1]
K. Seto,et al.
Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data
,
2011
.
[2]
Werner A. Stahel,et al.
Robust Statistics: The Approach Based on Influence Functions
,
1987
.
[3]
P. Sutton,et al.
Shedding Light on the Global Distribution of Economic Activity
,
2010
.
[4]
R. F. Grais,et al.
Explaining Seasonal Fluctuations of Measles in Niger Using Nighttime Lights Imagery
,
2011,
Science.
[5]
C. Elvidge,et al.
Development of a 2009 Stable Lights Product using DMSP-OLS data
,
2010
.
[6]
Mikhail Zhizhin,et al.
A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data
,
2009
.
[7]
N. Currit,et al.
Net primary production and gross domestic product in China derived from satellite imagery
,
2011
.
[8]
D. Roberts,et al.
Census from Heaven: An estimate of the global human population using night-time satellite imagery
,
2001
.
[9]
C. Jennison,et al.
Robust Statistics: The Approach Based on Influence Functions
,
1987
.