Feature aided Monte Carlo probabilistic data association filter for ballistic missile tracking

The problem of ballistic missile tracking in the presence of clutter is investigated. Probabilistic data association filter (PDAF) is utilized as the basic filtering algorithm. We propose to use sequential Monte Carlo methods, i.e., particle filters, aided with amplitude information (AI) in order to improve the tracking performance of a single target in clutter when severe nonlinearities exist in the system. We call this approach "Monte Carlo probabilistic data association filter with amplitude information (MCPDAF-AI)." Furthermore, we formulate a realistic problem in the sense that we use simulated radar cross section (RCS) data for a missile warhead and a cylinder chaff using Lucernhammer1, a state of the art electromagnetic signature prediction software, to model target and clutter amplitude returns as additional amplitude features which help to improve data association and tracking performance. A performance comparison is carried out between the extended Kalman filter (EKF) and the particle filter under various scenarios using single and multiple sensors. The results show that, when only one sensor is used, the MCPDAF performs significantly better than the EKF in terms of tracking accuracy under severe nonlinear conditions for ballistic missile tracking applications. However, when the number of sensors is increased, even under severe nonlinear conditions, the EKF performs as well as the MCPDAF.