Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond

AMPA-type glutamate receptors (AMPARs) mediate most fast excitatory synaptic transmission in the brain. Diversity in excitatory signalling arises, in part, from functional differences among AMPAR subtypes. Although the rapid insertion or deletion of AMPARs is recognised as important for the expression of conventional forms of long-term synaptic plasticity--triggered, for example, by Ca2+ entry through NMDA-type glutamate receptors--only recently has attention focused on novel forms of plasticity that are regulated by, or alter the expression of, Ca2+-permeable AMPARs. The dynamic regulation of these receptors is important for normal synaptic function and in disease states.

[1]  Pankaj Sah,et al.  Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala , 1998, Nature.

[2]  E. Nestler Is there a common molecular pathway for addiction? , 2005, Nature Neuroscience.

[3]  G. Collingridge,et al.  Receptor trafficking and synaptic plasticity , 2004, Nature Reviews Neuroscience.

[4]  Yu Tian Wang,et al.  Clathrin Adaptor AP2 and NSF Interact with Overlapping Sites of GluR2 and Play Distinct Roles in AMPA Receptor Trafficking and Hippocampal LTD , 2002, Neuron.

[5]  Mark J. Thomas,et al.  Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine , 2001, Nature Neuroscience.

[6]  B. Walmsley,et al.  Development of a robust central auditory synapse in congenital deafness. , 2005, Journal of neurophysiology.

[7]  D. Attwell,et al.  NMDA receptors are expressed in oligodendrocytes and activated in ischaemia , 2005, Nature.

[8]  C. Matute,et al.  Glutamate‐mediated glial injury: Mechanisms and clinical importance , 2006, Glia.

[9]  A. Bonci,et al.  Synaptic plasticity and drug addiction. , 2005, Current opinion in pharmacology.

[10]  Ichiro Kanazawa,et al.  Glutamate receptors: RNA editing and death of motor neurons , 2004, Nature.

[11]  M. Bennett,et al.  The AMPAR subunit GluR2: still front and center-stage 1 1 Published on the World Wide Web on 30 October 2000. , 2000, Brain Research.

[12]  J. Henley,et al.  The Molecular Pharmacology and Cell Biology of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptors , 2005, Pharmacological Reviews.

[13]  D. Feldmeyer,et al.  Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2 , 2000, Nature.

[14]  R. Malenka,et al.  Drugs of Abuse and Stress Trigger a Common Synaptic Adaptation in Dopamine Neurons , 2003, Neuron.

[15]  H. Cline,et al.  Visually Driven Modulation of Glutamatergic Synaptic Transmission Is Mediated by the Regulation of Intracellular Polyamines , 2002, Neuron.

[16]  P. L. Peng,et al.  ADAR2-Dependent RNA Editing of AMPA Receptor Subunit GluR2 Determines Vulnerability of Neurons in Forebrain Ischemia , 2006, Neuron.

[17]  Carlo Sala,et al.  Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2 , 2003, Nature.

[18]  M. Sheng,et al.  PDZ domain proteins of synapses , 2004, Nature Reviews Neuroscience.

[19]  Jinhyung Kim,et al.  A Genetic Switch for Epilepsy in Adult Mice , 2004, The Journal of Neuroscience.

[20]  P. Shaw,et al.  Molecular and cellular pathways of neurodegeneration in motor neurone disease , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[21]  J. Huguenard,et al.  Polyamines modulate AMPA receptor-dependent synaptic responses in immature layer v pyramidal neurons. , 2005, Journal of neurophysiology.

[22]  H. Adesnik,et al.  Stargazin modulates AMPA receptor gating and trafficking by distinct domains , 2005, Nature.

[23]  J. Kao,et al.  Long-term potentiation of exogenous glutamate responses at single dendritic spines. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  P. Manis,et al.  Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice. , 2005, Journal of neurophysiology.

[25]  P. Seeburg,et al.  The AMPA Receptor Subunits GluR-A and GluR-B Reciprocally Modulate Spinal Synaptic Plasticity and Inflammatory Pain , 2004, Neuron.

[26]  B. Trapp,et al.  NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia , 2006, Nature.

[27]  Jun Xia,et al.  Targeted In Vivo Mutations of the AMPA Receptor Subunit GluR2 and Its Interacting Protein PICK1 Eliminate Cerebellar Long-Term Depression , 2006, Neuron.

[28]  Yu Tian Wang,et al.  Nucleus Accumbens Long-Term Depression and the Expression of Behavioral Sensitization , 2005, Science.

[29]  D. Feldmeyer,et al.  Neurological dysfunctions in mice expressing different levels of the Q/R site–unedited AMPAR subunit GluR–B , 1999, Nature Neuroscience.

[30]  P. Seeburg,et al.  Regulation of ion channel/neurotransmitter receptor function by RNA editing , 2003, Current Opinion in Neurobiology.

[31]  M. Wong-Riley,et al.  Neuronal activity regulates protein and gene expressions of GluR2 in postnatal rat visual cortical neurons in culture , 2003, Journal of neurocytology.

[32]  Alberto Bacci,et al.  A Developmental Switch of AMPA Receptor Subunits in Neocortical Pyramidal Neurons , 2002, The Journal of Neuroscience.

[33]  C. Jahr,et al.  High-Concentration Rapid Transients of Glutamate Mediate Neural-Glial Communication via Ectopic Release , 2005, The Journal of Neuroscience.

[34]  R. Huganir,et al.  Calcium-Permeable AMPA Receptor Plasticity Is Mediated by Subunit-Specific Interactions with PICK1 and NSF , 2005, Neuron.

[35]  M. Versavel,et al.  The AMPA Antagonist ZK 200775 in Patients with Acute Ischaemic Stroke: A Double-Blind, Multicentre, Placebo-Controlled Safety and Tolerability Study , 2005, Cerebrovascular Diseases.

[36]  L. Trussell,et al.  Long-Term Specification of AMPA Receptor Properties after Synapse Formation , 2000, The Journal of Neuroscience.

[37]  S. Cull-Candy,et al.  Subunit interaction with PICK and GRIP controls Ca2+ permeability of AMPARs at cerebellar synapses , 2005, Nature Neuroscience.

[38]  S. Cull-Candy,et al.  Activity-Dependent Change in AMPA Receptor Properties in Cerebellar Stellate Cells , 2002, The Journal of Neuroscience.

[39]  P. Seeburg,et al.  Late-onset motoneuron disease caused by a functionally modified AMPA receptor subunit. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  E. Speckmann,et al.  RNA Editing at the Q/R Site for the Glutamate Receptor Subunits GLUR2, GLUR5, and GLUR6 in Hippocampus and Temporal Cortex from Epileptic Patients , 2001, Neurobiology of Disease.

[41]  Dirk Feldmeyer,et al.  Early-Onset Epilepsy and Postnatal Lethality Associated with an Editing-Deficient GluR-B Allele in Mice , 1995, Science.

[42]  H. V. Van Tol,et al.  Protein-Protein Coupling/Uncoupling Enables Dopamine D2 Receptor Regulation of AMPA Receptor-Mediated Excitotoxicity , 2005, The Journal of Neuroscience.

[43]  R. Nicoll,et al.  Auxiliary Subunits Assist AMPA-Type Glutamate Receptors , 2006, Science.

[44]  Andrei Rozov,et al.  Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression , 1999, Nature.

[45]  R. Tsien,et al.  Adaptation to Synaptic Inactivity in Hippocampal Neurons , 2005, Neuron.

[46]  J. Kauer Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. , 2004, Annual review of physiology.

[47]  F. Jensen,et al.  Decreased Glutamate Receptor 2 Expression and Enhanced Epileptogenesis in Immature Rat Hippocampus after Perinatal Hypoxia-Induced Seizures , 2001, The Journal of Neuroscience.

[48]  Stuart G. Cull-Candy,et al.  Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype , 2000, Nature.

[49]  E. Nestler,et al.  Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse? , 2002, Trends in Neurosciences.

[50]  S. Fleetwood-Walker,et al.  A new view on how AMPA receptors and their interacting proteins mediate neuropathic pain , 2004, Pain.

[51]  H. Engelman,et al.  The Distribution of Neurons Expressing Calcium-Permeable AMPA Receptors in the Superficial Laminae of the Spinal Cord Dorsal Horn , 1999, The Journal of Neuroscience.

[52]  N. Burnashev,et al.  Facilitation of currents through rat Ca2+‐permeable AMPA receptor channels by activity‐dependent relief from polyamine block , 1998, The Journal of physiology.

[53]  Mark J. Thomas,et al.  Cocaine-induced potentiation of synaptic strength in dopamine neurons: behavioral correlates in GluRA(-/-) mice. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[54]  W. Robberecht,et al.  GluR2 Deficiency Accelerates Motor Neuron Degeneration in a Mouse Model of Amyotrophic Lateral Sclerosis , 2005, Journal of neuropathology and experimental neurology.

[55]  P. Jonas,et al.  TwoB or not twoB: differential transmission at glutamatergic mossy fiber–interneuron synapses in the hippocampus , 2002, Trends in Neurosciences.

[56]  R. Dingledine,et al.  Voltage-controlled plasticity at GluR2-deficient synapses onto hippocampal interneurons. , 2004, Journal of neurophysiology.

[57]  S. Cull-Candy,et al.  Single-Channel Properties of Recombinant AMPA Receptors Depend on RNA Editing, Splice Variation, and Subunit Composition , 1997, The Journal of Neuroscience.

[58]  G. Collingridge,et al.  Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation , 2006, Nature Neuroscience.

[59]  A. Brooks-Kayal,et al.  Long‐term alterations in glutamate receptor and transporter expression following early‐life seizures are associated with increased seizure susceptibility , 2003, Journal of neurochemistry.

[60]  C. Torsney,et al.  AMPA Receptors Bring On the Pain , 2004, Neuron.

[61]  R. Dingledine,et al.  Long-term depression in hippocampal interneurons: joint requirement for pre- and postsynaptic events. , 1999, Science.

[62]  B. Sabatini,et al.  State-Dependent Calcium Signaling in Dendritic Spines of Striatal Medium Spiny Neurons , 2004, Neuron.

[63]  I. Greger,et al.  RNA Editing at Arg607 Controls AMPA Receptor Exit from the Endoplasmic Reticulum , 2002, Neuron.

[64]  Y. Kawahara,et al.  Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis , 2005, Journal of Molecular Medicine.

[65]  R. Nicoll,et al.  AMPA Receptor Trafficking at Excitatory Synapses , 2003, Neuron.

[66]  Y. Yoshida,et al.  Blockage of Ca2+-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells , 2002, Nature Medicine.

[67]  I. Greger,et al.  AMPA Receptor Tetramerization Is Mediated by Q/R Editing , 2003, Neuron.

[68]  B. Gustafsson,et al.  Creation of AMPA-silent synapses in the neonatal hippocampus , 2004, Nature Neuroscience.

[69]  Y. Stern-Bach,et al.  Two Regions in the N-terminal Domain of Ionotropic Glutamate Receptor 3 Form the Subunit Oligomerization Interfaces That Control Subtype-specific Receptor Assembly* , 2005, Journal of Biological Chemistry.

[70]  P. Somogyi,et al.  Climbing Fiber Innervation of NG2-Expressing Glia in the Mammalian Cerebellum , 2005, Neuron.

[71]  R. Tsien,et al.  Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors , 2004, Nature Neuroscience.

[72]  Wei Lu,et al.  PICK1 Interacts with ABP/GRIP to Regulate AMPA Receptor Trafficking , 2005, Neuron.

[73]  M. Goldberg,et al.  Dendritic Spines Lost during Glutamate Receptor Activation Reemerge at Original Sites of Synaptic Contact , 2001, The Journal of Neuroscience.

[74]  Rafael Yuste,et al.  Space matters: local and global dendritic Ca2+ compartmentalization in cortical interneurons , 2005, Trends in Neurosciences.

[75]  N Kopell,et al.  Genetically altered AMPA-type glutamate receptor kinetics in interneurons disrupt long-range synchrony of gamma oscillation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Dongdong Li,et al.  Selective Expression of Heteromeric AMPA Receptors Driven by Flip–Flop Differences , 2004, The Journal of Neuroscience.

[77]  Pamela L. Follett,et al.  NBQX Attenuates Excitotoxic Injury in Developing White Matter , 2000, The Journal of Neuroscience.

[78]  C. Lüscher,et al.  Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression , 2006, Nature Neuroscience.

[79]  Pamela L. Follett,et al.  Glutamate Receptor-Mediated Oligodendrocyte Toxicity in Periventricular Leukomalacia: A Protective Role for Topiramate , 2004, The Journal of Neuroscience.

[80]  Y. Stern-Bach,et al.  Functional Assembly of AMPA and Kainate Receptors Is Mediated by Several Discrete Protein-Protein Interactions , 2001, Neuron.

[81]  C. McBain,et al.  Two Loci of Expression for Long-Term Depression at Hippocampal Mossy Fiber-Interneuron Synapses , 2004, The Journal of Neuroscience.

[82]  C. Jahr,et al.  Ectopic Release of Synaptic Vesicles , 2003, Neuron.

[83]  Lorraine W. Lau,et al.  Expression of Ca2+-Permeable AMPA Receptor Channels Primes Cell Death in Transient Forebrain Ischemia , 2004, Neuron.

[84]  Sunjeev K Kamboj,et al.  Intracellular spermine confers rectification on rat calcium‐permeable AMPA and kainate receptors. , 1995, The Journal of physiology.

[85]  Solomon H. Snyder,et al.  S-Nitrosylation of N-Ethylmaleimide Sensitive Factor Mediates Surface Expression of AMPA Receptors , 2005, Neuron.

[86]  F. Jensen,et al.  AMPA/Kainate Receptor-Mediated Downregulation of GABAergic Synaptic Transmission by Calcineurin after Seizures in the Developing Rat Brain , 2005, The Journal of Neuroscience.

[87]  G. Collingridge,et al.  Surface Expression of AMPA Receptors in Hippocampal Neurons Is Regulated by an NSF-Dependent Mechanism , 1999, Neuron.

[88]  L. Bruijn,et al.  Unraveling the mechanisms involved in motor neuron degeneration in ALS. , 2004, Annual review of neuroscience.

[89]  Rafael Yuste,et al.  Calcium Microdomains in Aspiny Dendrites , 2003, Neuron.

[90]  Roberto Malinow,et al.  Subunit-Specific Rules Governing AMPA Receptor Trafficking to Synapses in Hippocampal Pyramidal Neurons , 2001, Cell.

[91]  S. Itohara,et al.  Calcium-permeable AMPA receptors promote misfolding of mutant SOD1 protein and development of amyotrophic lateral sclerosis in a transgenic mouse model. , 2004, Human molecular genetics.

[92]  K. Tóth,et al.  Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons , 1998, Nature Neuroscience.

[93]  M. Bennett,et al.  Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[94]  T. Parks,et al.  Development of the specialized AMPA receptors of auditory neurons. , 2002, Journal of neurobiology.

[95]  B. Sakmann,et al.  Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex , 1999, Nature Neuroscience.

[96]  C. McBain,et al.  Distinct NMDA Receptors Provide Differential Modes of Transmission at Mossy Fiber-Interneuron Synapses , 2002, Neuron.

[97]  R. Nicoll,et al.  Stargazin is an AMPA receptor auxiliary subunit. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Christian Rosenmund,et al.  Heteromeric AMPA Receptors Assemble with a Preferred Subunit Stoichiometry and Spatial Arrangement , 2001, Neuron.

[99]  B. Keller,et al.  Ca2+, mitochondria and selective motoneuron vulnerability: implications for ALS , 2005, Trends in Neurosciences.

[100]  H. Adesnik,et al.  TARP γ-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity , 2005, Nature Neuroscience.