Synthesis, structure, magnetic and optoelectric properties of layered NaM0.5Sn0.5S2 (M= Mn, Fe)

[1]  K. Vidyasagar,et al.  Syntheses, structural variants and characterization of AInM′S4 (A=alkali metals, Tl; M′ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS4 and KInSnS4 compounds , 2016 .

[2]  A. Mar,et al.  Trigonal Planar [HgSe3](4-) Unit: A New Kind of Basic Functional Group in IR Nonlinear Optical Materials with Large Susceptibility and Physicochemical Stability. , 2016, Journal of the American Chemical Society.

[3]  Yicheng Wu,et al.  K2Sn2ZnSe6, Na2Ge2ZnSe6, and Na2In2GeSe6: a new series of quaternary selenides with intriguing structural diversity and nonlinear optical properties. , 2016, Dalton transactions.

[4]  Kota Suzuki,et al.  Structure-property relationships in lithium superionic conductors having a Li10GeP2S12-type structure. , 2015, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[5]  Zhihua Yang,et al.  An investigation of new infrared nonlinear optical material: BaCdSnSe4, and three new related centrosymmetric compounds: Ba2SnSe4, Mg2GeSe4, and Ba2Ge2S6. , 2015, Dalton transactions.

[6]  D. J. Clark,et al.  Polymorphism and Second Harmonic Generation in a Novel Diamond-like Semiconductor: Li2MnSnS4 , 2015 .

[7]  C. Li,et al.  SnGa2GeS6: synthesis, structure, linear and nonlinear optical properties. , 2015, Dalton transactions.

[8]  Jinu P. Yohannan Syntheses and characterization of one-dimensional alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs) , 2015 .

[9]  M. Gargouri,et al.  Crystal chemistry and optical investigations of the Cu 2 Zn(Sn,Si)S 4 series for photovoltaic applications , 2014 .

[10]  A. Douvalis,et al.  Field-induced spin-flop in antiferromagnetic semiconductors with commensurate and incommensurate magnetic structures: Li2FeGeS4 (LIGS) and Li2FeSnS4 (LITS). , 2014, Inorganic chemistry.

[11]  D. J. Clark,et al.  Optical nonlinearity in Cu₂CdSnS₄ and α/β-Cu₂ZnSiS₄: diamond-like semiconductors with high laser-damage thresholds. , 2014, Inorganic chemistry.

[12]  Hsin Wang,et al.  Synthesis and thermoelectric properties of Cu excess Cu2ZnSnSe4 , 2014 .

[13]  K. Möller,et al.  Quaternary Diamond‐Like Chalcogenidometalate Networks as Efficient Anode Material in Lithium‐Ion Batteries , 2013 .

[14]  Hui Wu,et al.  Structure and magnetic properties of the α-NaFeO2-type honeycomb compound Na3Ni2BiO6. , 2013, Inorganic chemistry.

[15]  Klaus Zick,et al.  Li10SnP2S12: an affordable lithium superionic conductor. , 2013, Journal of the American Chemical Society.

[16]  H. Fukuoka,et al.  Structural and thermoelectric properties of Cu6Fe4Sn12Se32 single crystal , 2013 .

[17]  M. Kanatzidis,et al.  Selective Removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3–xS6 (x = 0.5–1) (KMS-2) Relevant to Nuclear Waste Remediation , 2013 .

[18]  A. K. Rastogi,et al.  Effects of competing magnetic interactions on the electronic transport properties of CuCrSe2 , 2013 .

[19]  P. Strobel,et al.  Antiferromagnetism and ferromagnetism in layered1T-CrSe2with V and Ti replacements , 2013 .

[20]  S. Jobic,et al.  Crystal Structures of Photovoltaic Chalcogenides, an Intricate Puzzle to Solve: the Cases of CIGSe and CZTS Materials† , 2012 .

[21]  M. Kanatzidis,et al.  New layered tin(II) thiophosphates ASnPS4 (A = K, Rb, Cs): synthesis, structure, glass formation, and the modulated CsSnPS4. , 2012, Inorganic chemistry.

[22]  F. Gao,et al.  Structural and Optical Properties of In-Free Cu2ZnSn(S,Se)4 Solar Cell Materials , 2012 .

[23]  Lin Sun,et al.  Single-step preparation and characterization of Cu2ZnSn(SxSe1−x)4 thin films deposited by pulsed laser deposition method , 2012 .

[24]  H. Nozaki,et al.  Crystal structure determination of solar cell materials: Cu2ZnSnS4 thin films using X-ray anomalous dispersion , 2012 .

[25]  Zhenyu Feng,et al.  Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4 , 2012 .

[26]  S. Jobic,et al.  Structure flexibility of the Cu2ZnSnS4 absorber in low-cost photovoltaic cells: from the stoichiometric to the copper-poor compounds. , 2012, Inorganic chemistry.

[27]  B. Roling,et al.  Heterobimetallic chalcogenidometallate strands: synthesis, structure, magnetism, and conductivity. , 2012, Inorganic chemistry.

[28]  T. Schleid,et al.  Two Alkali-Metal Yttrium Tellurides: Single Crystals of Trigonal KYTe2 and Hexagonal RbYTe2† , 2009 .

[29]  R. Cava,et al.  Magnetic structure and properties of the S=5/2 triangular antiferromagnet {alpha}-NaFeO{sub 2} , 2007, cond-mat/0703195.

[30]  F. Ye,et al.  Spontaneous spin-lattice coupling in the geometrically frustrated triangular lattice antiferromagnet CuFeO2 , 2006 .

[31]  H. Balci,et al.  Magnetic contribution to the specific heat of Pb 1 − x Eu x Te ( x = 0.027 , 0.073 ) , 2005, cond-mat/0511338.

[32]  F. Disalvo,et al.  Tl2AXTe4 (A = Cd, Hg, Mn; X = Ge, Sn): Crystal Structure, Electronic Structure, and Thermoelectric Properties , 2005 .

[33]  C. Hu,et al.  Synthesis, crystal structure, and properties of MnNCN, the first carbodiimide of a magnetic transition metal. , 2005, Inorganic chemistry.

[34]  M. Kanatzidis,et al.  Quaternary selenostannates Na2−xGa2−xSn1+xSe6 and AGaSnSe4 (A=K, Rb, and Cs) through rapid cooling of melts. Kinetics versus thermodynamics in the polymorphism of AGaSnSe4 , 2004 .

[35]  M. Kanatzidis,et al.  Cooling of melts: kinetic stabilization and polymorphic transitions in the KInSnSe 4 system. , 2004, Inorganic chemistry.

[36]  B. Martin,et al.  Crystal structure of sodium ytterbium(III) selenide, NaYbSe2 , 2003 .

[37]  B. Martin,et al.  Crystal structure of potassium ytterbium(III) selenide, KYbSe2 , 2003 .

[38]  L. Croguennec,et al.  Nuclear and magnetic structure of layered LiFe1-xCoxO2 (0 ≤ x ≤ 1) determined by high-resolution neutron diffraction , 2002 .

[39]  R. Haushalter,et al.  One Dimensional Inorganic Polymers: Synthesis and Structural Characterization of the Main Group Metal Polymers K2HgSnTe4, (Et4N)2HgSnTe4, (Ph4P)GeInTe4, and RbInTe2 , 1994 .

[40]  H. Yoshizawa,et al.  Successive magnetic ordering in CuFeO2 : a new type of partially disordered phase in a triangular lattice antiferromagnet , 1993 .

[41]  J. S. Sweeney,et al.  Compression of α-MnS (alabandite) and a new high-pressure phase , 1993 .

[42]  J. Ibers,et al.  Synthesis and structures of the quaternary sulfides KGaSnS4, KInGeS4, and KGaGeS4 , 1992 .

[43]  H. Kadowaki,et al.  Neutron powder diffraction study of the two-dimensional triangular lattice antiferromagnet CuCrO2 , 1990 .

[44]  H. Wada,et al.  Synthesis, order-disorder transition and magnetic properties of LiLnS2, LiLnSe2, NaLnS2 and NaLnSe2 (Ln=Lanthanides) , 1987 .

[45]  L. Trichet,et al.  Structural, electrical, magnetic and NMR study of the NaxCrxTi1−xS2 system , 1981 .

[46]  F. Jellinek,et al.  Crystal structures and magnetic structures of some metal(I) chromium(III) sulfides and selenides , 1973 .

[47]  B. V. Laar,et al.  MAGNETIC STRUCTURE OF KCRS2 , 1973 .

[48]  M. Agarwal,et al.  Microtopographical Characterization of Vapour‐grown SnS2 Single Crystals , 1993 .

[49]  W. Meister,et al.  Crystal structure of sodium ytterbium (III) disulfide, NaYbS2 , 1993 .

[50]  P. Colombet,et al.  Ferro-antiferromagnetic phase transition in a diluted triangular chromium III lattice : The NaxCrxTi1−xS2 compounds , 1983 .

[51]  P. Colombet,et al.  Spin-glass behavior of the Cu2xCr2xSn2−2xS4 spinels: An antiferromagnetic frustrated lattice for x ⩽ 0.5 , 1983 .

[52]  G. Wiegers Physical properties of first-row transition metal dichalcogenides and their intercalates , 1980 .

[53]  T. A. Bak,et al.  Magnetic Phase Transitions in Stoichiometric FeS Studied by Means of Neutron Diffraction. , 1960 .