Bovine milk-derived cells express transcriptome markers of pluripotency and secrete bioactive factors with regenerative and antimicrobial activity

[1]  Sara F. Saadawy,et al.  Breast milk mesenchymal stem cells abate cisplatin-induced cardiotoxicity in adult male albino rats via modulating the AMPK pathway , 2022, Scientific Reports.

[2]  P. Sethupathy,et al.  Comparative Analysis of microRNAs that Stratify in vitro Mammary stem and Progenitor Activity Reveals Functionality of Human miR-92b-3p , 2022, Journal of Mammary Gland Biology and Neoplasia.

[3]  R. Harman,et al.  Mesenchymal stromal cells isolated from chicken peripheral blood secrete bioactive factors with antimicrobial and regenerative properties , 2022, Frontiers in Veterinary Science.

[4]  C. Kühn,et al.  Single-cell RNA sequencing of freshly isolated bovine milk cells and cultured primary mammary epithelial cells , 2021, Scientific data.

[5]  R. Harman,et al.  Translational Animal Models Provide Insight Into Mesenchymal Stromal Cell (MSC) Secretome Therapy , 2021, Frontiers in Cell and Developmental Biology.

[6]  K. Suszták,et al.  How to Get Started with Single Cell RNA Sequencing Data Analysis , 2021, Journal of the American Society of Nephrology : JASN.

[7]  R. Harman,et al.  Single-cell RNA sequencing of equine mesenchymal stromal cells from primary donor-matched tissue sources reveals functional heterogeneity in immune modulation and cell motility , 2020, Stem cell research & therapy.

[8]  V. Tančin,et al.  Epidemiology and Classification of Mastitis , 2020, Animals : an open access journal from MDPI.

[9]  S. Zhang,et al.  Secreted sphingomyelins modulate low mammary cancer incidence observed in certain mammals , 2020, Scientific Reports.

[10]  K. Bach,et al.  Transcriptional changes in the mammary gland during lactation revealed by single cell sequencing of cells from human milk , 2020, bioRxiv.

[11]  W. Ghali,et al.  Prevalence of antimicrobial resistance genes and its association with restricted antimicrobial use in food-producing animals: a systematic review and meta-analysis. , 2020, The Journal of antimicrobial chemotherapy.

[12]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[13]  W. Rasband,et al.  Angiogenesis Analyzer for ImageJ — A comparative morphometric analysis of “Endothelial Tube Formation Assay” and “Fibrin Bead Assay” , 2020, Scientific Reports.

[14]  C. Laurencin,et al.  Emergence of the Stem Cell Secretome in Regenerative Engineering. , 2020, Trends in biotechnology.

[15]  S. Han,et al.  Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments — A review , 2020, Asian-Australasian journal of animal sciences.

[16]  Y. Helmy,et al.  Prevalence, Antimicrobial Resistance Profiles, Virulence and Enterotoxins-Determinant Genes of MRSA Isolated from Subclinical Bovine Mastitis in Egypt , 2020, Pathogens.

[17]  R. Harman,et al.  The mesenchymal stromal cell secretome impairs methicillin‐resistant Staphylococcus aureus biofilms via cysteine protease activity in the equine model , 2020, Stem cells translational medicine.

[18]  Ron Edgar,et al.  NCBI gene expression and hybridization array data repository , 2020 .

[19]  O. Peralta,et al.  Safety and efficacy of a mesenchymal stem cell intramammary therapy in dairy cows with experimentally induced Staphylococcus aureus clinical mastitis , 2020, Scientific Reports.

[20]  R. Chakrabarti,et al.  Inducible knockout of ∆Np63 alters cell polarity and metabolism during pubertal mammary gland development , 2019, FEBS letters.

[21]  J. Xia,et al.  Stem cell secretome as a new booster for regenerative medicine. , 2019, Bioscience trends.

[22]  A. Escobar,et al.  Bovine fetal mesenchymal stem cells exert antiproliferative effect against mastitis causing pathogen Staphylococcus aureus , 2019, Veterinary Research.

[23]  S. Beck,et al.  Minimalinvasive Gewebeentnahme am bovinen Euter , 2019, Tierärztliche Praxis Ausgabe G: Großtiere / Nutztiere.

[24]  L. Grotta,et al.  Identification and Characterization of a Stem Cell-Like Population in Bovine Milk: A Potential New Source for Regenerative Medicine in Veterinary. , 2018, Stem cells and development.

[25]  G. Öztürk,et al.  Transfer and Integration of Breast Milk Stem Cells to the Brain of Suckling Pups , 2018, Scientific Reports.

[26]  G. Öztürk,et al.  Transfer and Integration of Breast Milk Stem Cells to the Brain of Suckling Pups , 2018, Scientific Reports.

[27]  G. R. Van de Walle,et al.  The secretome from bovine mammosphere-derived cells (MDC) promotes angiogenesis, epithelial cell migration, and contains factors associated with defense and immunity , 2018, Scientific Reports.

[28]  E. Silbergeld,et al.  World Health Organization (WHO) guidelines on use of medically important antimicrobials in food-producing animals , 2018, Antimicrobial Resistance & Infection Control.

[29]  G. R. Van de Walle,et al.  Conserved and variable: Understanding mammary stem cells across species , 2018, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[30]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[31]  Heather Ganshorn,et al.  Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis , 2017, The Lancet. Planetary health.

[32]  H. Jun,et al.  Stem Cell Secretome and Its Effect on Cellular Mechanisms Relevant to Wound Healing. , 2017, Molecular therapy : the journal of the American Society of Gene Therapy.

[33]  J. Rex,et al.  Time for a change in how new antibiotics are reimbursed: Development of an insurance framework for funding new antibiotics based on a policy of risk mitigation. , 2017, Health policy.

[34]  R. Perez-Fernandez,et al.  Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine , 2017, International journal of molecular sciences.

[35]  R. Harman,et al.  Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds , 2017, Stem Cell Research & Therapy.

[36]  K. Ueno,et al.  Therapeutic strategies for cell-based neovascularization in critical limb ischemia , 2017, Journal of Translational Medicine.

[37]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[38]  M. Henriques,et al.  Control of Bovine Mastitis: Old and Recent Therapeutic Approaches , 2016, Current Microbiology.

[39]  J. Patel,et al.  Assessment of Growth Factors Secreted by Human Breastmilk Mesenchymal Stem Cells. , 2016, Breastfeeding medicine : the official journal of the Academy of Breastfeeding Medicine.

[40]  M. Fustini,et al.  Differential expression of living mammary epithelial cell subpopulations in milk during lactation in dairy cows. , 2015, Journal of dairy science.

[41]  R. Harman,et al.  Microencapsulated equine mesenchymal stromal cells promote cutaneous wound healing in vitro , 2015, Stem Cell Research & Therapy.

[42]  L. Castellano,et al.  Mammosphere formation assay from human breast cancer tissues and cell lines. , 2015, Journal of visualized experiments : JoVE.

[43]  G. Tonon,et al.  p63 sustains self-renewal of mammary cancer stem cells through regulation of Sonic Hedgehog signaling , 2015, Proceedings of the National Academy of Sciences.

[44]  Cole Trapnell,et al.  Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions , 2014, Nature Biotechnology.

[45]  A. Józkowicz,et al.  Therapeutic angiogenesis for revascularization in peripheral artery disease. , 2013, Gene.

[46]  B. Faircloth,et al.  Primer3—new capabilities and interfaces , 2012, Nucleic acids research.

[47]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[48]  M. Alkafafy,et al.  Immunohistochemical studies on the bovine lactating mammary gland (Bos taurus). , 2012, Acta histochemica.

[49]  I. Barash,et al.  Cell Hierarchy and Lineage Commitment in the Bovine Mammary Gland , 2012, PloS one.

[50]  A. Rocha,et al.  Distinct stem cells contribute to mammary gland development and maintenance , 2011, Nature.

[51]  R. Zadoks,et al.  Methicillin Resistant S. aureus in Human and Bovine Mastitis , 2011, Journal of Mammary Gland Biology and Neoplasia.

[52]  G. Smyth,et al.  ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. , 2009, Journal of immunological methods.

[53]  E. Birney,et al.  Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt , 2009, Nature Protocols.

[54]  J. Stingl Detection and analysis of mammary gland stem cells , 2009, The Journal of pathology.

[55]  P. Lacasse,et al.  Mammary tissue damage during bovine mastitis: causes and control. , 2008, Journal of animal science.

[56]  U. Sonesson,et al.  The environmental impact of mastitis: a case study of dairy herds. , 2005, The Science of the total environment.

[57]  Irving L Weissman,et al.  Plasticity of Adult Stem Cells , 2004, Cell.

[58]  G. Dontu,et al.  In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. , 2003, Genes & development.

[59]  S. McDougall Bovine mastitis: epidemiology, treatment and control , 2002, New Zealand veterinary journal.

[60]  H. Seegers,et al.  Loss in milk yield and related composition changes resulting from clinical mastitis in dairy cows. , 1998, Preventive veterinary medicine.

[61]  E. Hellmén,et al.  Immunohistochemical investigation into the distribution pattern of myoepithelial cells in the bovine mammary gland , 1997, Journal of Dairy Research.

[62]  H. Huynh,et al.  Establishment of bovine mammary epithelial cells (MAC-T): an in vitro model for bovine lactation. , 1991, Experimental cell research.

[63]  A. Wehrend,et al.  [Minimal-invasive tissue sampling at the bovine udder]. , 2019, Tierarztliche Praxis. Ausgabe G, Grosstiere/Nutztiere.

[64]  Timothy P. L. Smith,et al.  Modernizing the Bovine Reference Genome Assembly , 2018 .

[65]  Dr. Anuj Sharma WHO Guidelines on Use of Medically Important Antimicrobials in Food-Producing Animals , 2017 .

[66]  D. Prockop,et al.  Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. , 2006, Cytotherapy.

[67]  L. Allen Stem cells. , 2003, The New England journal of medicine.

[68]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[69]  P. Rainard,et al.  Cells and cytokines in inflammatory secretions of bovine mammary gland. , 2000, Advances in experimental medicine and biology.

[70]  N. Jain,et al.  Common mammary pathogens and factors in infection and mastitis. , 1979, Journal of dairy science.

[71]  D. Jensen,et al.  Macrophages in bovine milk. , 1975, American journal of veterinary research.

[72]  E. Preissecker [Treatment of mastitis during lactation]. , 1949, Osterreichische Zeitschrift fur Kinderheilkunde und Kinderfursorge.