Mechanisms for Discordant Alternans

Discordant Alternans Mechanism. Introduction: Discordant alternans has the potential to produce larger alternans of the ECG T wave than concordant alternans, but its mechanism is unknown.

[1]  A Garfinkel,et al.  Spatiotemporal heterogeneity in the induction of ventricular fibrillation by rapid pacing: importance of cardiac restitution properties. , 1999, Circulation research.

[2]  T. Sano,et al.  Electrical alternans of TU wave in Romano-Ward syndrome. , 1976, British heart journal.

[3]  M J Lab,et al.  Electrophysiological alternans and restitution during acute regional ischaemia in myocardium of anaesthetized pig. , 1988, The Journal of physiology.

[4]  E. Kimura,et al.  A case showing electrical alternans of the T wave without change in the QRS complex. , 1963, American heart journal.

[5]  G. W. Beeler,et al.  Reconstruction of the action potential of ventricular myocardial fibres , 1977, The Journal of physiology.

[6]  Daniel J. Gauthier,et al.  Prevalence of Rate-Dependent Behaviors in Cardiac Muscle , 1999 .

[7]  R. Verrier,et al.  Electrophysiologic Basis for T Wave Alternans as an Index of Vulnerability to Ventricular Fibrillation , 1994, Journal of cardiovascular electrophysiology.

[8]  A Garfinkel,et al.  Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. , 1999, The American journal of physiology.

[9]  F. Fenton,et al.  Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. , 1998, Chaos.

[10]  L. Glass,et al.  Instabilities of a propagating pulse in a ring of excitable media. , 1993, Physical review letters.

[11]  B. Hoffman,et al.  Effect of heart rate on cardiac membrane potentials and the unipolar electrogram. , 1954, The American journal of physiology.

[12]  R. Cohen,et al.  Electrical alternans during rest and exercise as predictors of vulnerability to ventricular arrhythmias. , 1997, The American journal of cardiology.

[13]  J. Ruskin,et al.  Electrical alternans and vulnerability to ventricular arrhythmias. , 1994, The New England journal of medicine.

[14]  J. Nolasco,et al.  A graphic method for the study of alternation in cardiac action potentials. , 1968, Journal of applied physiology.

[15]  R. Gilmour,et al.  Biphasic restitution of action potential duration and complex dynamics in ventricular myocardium. , 1995, Circulation research.

[16]  A. Karma,et al.  New paradigm for drug therapies of cardiac fibrillation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  C. Antzelevitch,et al.  Cellular and ionic basis for T-wave alternans under long-QT conditions. , 1999, Circulation.

[18]  D. Rosenbaum,et al.  Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. , 1999, Circulation.

[19]  C. Fisch,et al.  Cardiac alternans: diverse mechanisms and clinical manifestations. , 1992, Journal of the American College of Cardiology.

[20]  H. Hellerstein,et al.  Electrical Alternation in Experimental Coronary Artery Occlusion. , 1949, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[21]  D. Durrer,et al.  The Effect of Acute Coronary Artery Occlusion on Subepicardial Transmembrane Potentials in the Intact Porcine Heart , 1977, Circulation.

[22]  R J Cohen,et al.  Electrical alternans and cardiac electrical instability. , 1988, Circulation.

[23]  A. Garfinkel,et al.  Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. , 1999, American journal of physiology. Heart and circulatory physiology.

[24]  Harold M. Hastings,et al.  Memory in an Excitable Medium: A Mechanism for Spiral Wave Breakup in the Low-Excitability Limit , 1999 .

[25]  R. Acunzo,et al.  Pseudo 2:1 atrioventricular block and T wave alternans in the long QT syndromes. , 1991, Journal of the American College of Cardiology.

[26]  A Malliani,et al.  Electrical alternation of the T-wave: clinical and experimental evidence of its relationship with the sympathetic nervous system and with the long Q-T syndrome. , 1975, American heart journal.

[27]  A. Karma Electrical alternans and spiral wave breakup in cardiac tissue. , 1994, Chaos.

[28]  M. Kleinfeld,et al.  Electrical alternans of components of action potential , 1968 .

[29]  R. Gilmour,et al.  Electrical restitution and spatiotemporal organization during ventricular fibrillation. , 1999, Circulation research.