Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction An In Situ XANES and EXAFS Investigation

The electrocatalysis of the oxygen reduction reaction (ORR) on five binary Pi alloys (PtCr/C, PtMn/C, PtFe/C, PtCo/C, and PtNi/C) supported on high surface area carbon in a proton exchange membrane fuel cell was investigated. All the alloy electrocatalysts exhibited a high degree of crystallinity with the primary phase of the type Pt3M (LI2 structure with fcc type lattice) and a secondary phase (only minor contribution from this phase) being of the type PtM (LIo structure with tetragonal lattice) as evidenced from x-ray powder diffraction (XRD) analysis. The electrode kinetic studies on the Pt alloys at 95~ and 5 atm pressure showed a two- to threefold increase in the exchange current densities and the current density at 900 mV as well as a decrease in the overvoltage at i0 mA em -2 relative to Pt/C eleetrocatalyst. The PtCr/C alloy exhibited the best performance. In situ EXAFS and XANES analysis at potentials in the double-layer region [0.54 V vs. reversible hydrogen electrode (RHE)] revealed (i) all the alloys possess higher Pt d-band vacancies per atom (with the exception of PtMn/C alloy) relative to Pt/C electrocatalyst and (it) contractions in the Pt-Pt bond distances which confirmed the results from ex situ XRD analysis. A potential excursion to 0.84 V vs. RHE showed that, in contrast to the Pt alloys, the Pt/C electrocatalyst exhibits a significant increase in the Pt d-band vacancies per atom. This increase, in Pt/C has been rationalized as being due to adsorption of OH species from the electrolyte following a Temkin isotherm behavior, which does not occur on the Pt alloys. Correlation of the electronic (Pt d-band vacancies) and geometric (Pt-Pt bond distance) with the electrochemical performance characteristics exhibits a volcano type behavior with the PtCr/C alloy being at the top of the curve. The enhanced electrocatalysis by the alloys therefore can be rationalized on the basis of the interplay between the electronic and geometric factors on one hand and their effect on the chemisorption behavior of OH species from the electrolyte. The role of Pt/C and Pt alloys on the mechanism of the oxygen reduction reaction (ORR) has been investigated previously, 1-4 however the mechanism still remains elusive. One of the first investigations I of the ORR on Pt alloy electrocatalysts was in phosphoric acid; the effect of changes in the Pt-Pt interatomic distances, caused by alloying, was examined. The strength of the [M-HO2]aas bond, the intermediate formed in the rate-determining step of the molecular dioxygen reduction, was shown to depend on the Pt-Pt bond distance in the alloys. A plot of the electrocatalytic activity vs. adsorbate bond strength exhibited a volcano type behavior. 5 It was shown that the lattice contractions due to alloying resulted in a more favorable Pt-Pt distance (while maintaining the favorable Pt electronic properties) for dissociative adsorption of 02. This view was disputed by Glass et al. ~ in their investigation on bulk alloys of PtCr (the binary alloy at the top of the volcano plot) of different compositions. The latter investigation showed no activity enhancement for the ORR in phosphoric acid. This study therefore suggested the possibility of differences in electrochemical properties of bulk vs. supported alloy electrocatalysts (small particles of 35-85 A). A recent study on supported PtCo electrocatalysts ~ revealed the possibility that particle termination, primarily at the vicinal planes in the supported alloy electrocatalyst, is the reason for the enhanced ORR electrocatalysis (i.e., vicinal planes are more active than ). Paffett et al., 3 attributed higher activities for the ORR on bulk PtCr alloys in phosphoric acid to surface roughening, and hence increased Pt surface area, caused by the dissolution of the more oxidizable alloying component Cr. In contrast to these findings on bulk alloys, the supported alloy electrocatalysts have been reported to retain their nonnoble alloying element in the electrode during long periods (6000-9000 h) of operation in phosphoric acid fuel cells (PAFCs) 6 and proton exchange membrane fuel ceils (PEMFCs). 7 Based on these previous investigations and in the context of the ORR mechanisms, the principle explanations for the