On denoising modulo 1 samples of a function

Consider an unknown smooth function $f: [0,1] \rightarrow \mathbb{R}$, and say we are given $n$ noisy$\mod 1$ samples of $f$, i.e., $y_i = (f(x_i) + \eta_i)\mod 1$ for $x_i \in [0,1]$, where $\eta_i$ denotes noise. Given the samples $(x_i,y_i)_{i=1}^{n}$ our goal is to recover smooth, robust estimates of the clean samples $f(x_i) \bmod 1$. We formulate a natural approach for solving this problem which works with representations of mod 1 values over the unit circle. This amounts to solving a quadratically constrained quadratic program (QCQP) with non-convex constraints involving points lying on the unit circle. Our proposed approach is based on solving its relaxation which is a trust-region sub-problem, and hence solvable efficiently. We demonstrate its robustness to noise % of our approach via extensive simulations on several synthetic examples, and provide a detailed theoretical analysis.

[1]  Shuzhong Zhang,et al.  Complex Quadratic Optimization and Semidefinite Programming , 2006, SIAM J. Optim..

[2]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[3]  Mark D. Pritt,et al.  Phase unwrapping by means of multigrid techniques for interferometric SAR , 1996, IEEE Trans. Geosci. Remote. Sens..

[4]  A. Singer Angular Synchronization by Eigenvectors and Semidefinite Programming. , 2009, Applied and computational harmonic analysis.

[5]  Mihai Cucuringu,et al.  Sync-Rank: Robust Ranking, Constrained Ranking and Rank Aggregation via Eigenvector and Semidefinite Programming Synchronization , 2015, ArXiv.

[6]  William W. Hager,et al.  Minimizing a Quadratic Over a Sphere , 2001, SIAM J. Optim..

[7]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[8]  Giorgio Franceschetti,et al.  Phase unwrapping by means of genetic algorithms , 1998 .

[9]  Danny C. Sorensen,et al.  A New Matrix-Free Algorithm for the Large-Scale Trust-Region Subproblem , 2000, SIAM J. Optim..

[10]  Franz Rendl,et al.  A semidefinite framework for trust region subproblems with applications to large scale minimization , 1997, Math. Program..

[11]  Batuhan Osmanoglu,et al.  Three-Dimensional Phase Unwrapping for Satellite Radar Interferometry, I: DEM Generation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[12]  D J Bone,et al.  Fourier fringe analysis: the two-dimensional phase unwrapping problem. , 1991, Applied optics.

[13]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[14]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[15]  Ramesh Raskar,et al.  On unlimited sampling , 2017, 2017 International Conference on Sampling Theory and Applications (SampTA).

[16]  Nicholas I. M. Gould,et al.  Solving the Trust-Region Subproblem using the Lanczos Method , 1999, SIAM J. Optim..

[17]  Yonina C. Eldar,et al.  Phase Retrieval: An Overview of Recent Developments , 2015, ArXiv.

[18]  Howard A. Zebker,et al.  Phase unwrapping algorithms for radar interferometry: residue-cut, least-squares, and synthesis algorithms , 1998 .

[19]  Andrew Hooper,et al.  Phase unwrapping in three dimensions with application to InSAR time series. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  D. Sorensen Newton's method with a model trust region modification , 1982 .

[21]  Hemant Tyagi,et al.  Provably robust estimation of modulo 1 samples of a smooth function with applications to phase unwrapping , 2018, J. Mach. Learn. Res..

[22]  Bamdev Mishra,et al.  Manopt, a matlab toolbox for optimization on manifolds , 2013, J. Mach. Learn. Res..

[23]  Akiko Takeda,et al.  Solving the Trust-Region Subproblem By a Generalized Eigenvalue Problem , 2017, SIAM J. Optim..