Vertex Data Compression through Vector Quantization

Rendering geometrically detailed 3D models requires the transfer and processing of large amounts of triangle and vertex geometry data. Compressing the geometry bit stream can reduce bandwidth requirements and alleviate transmission bottlenecks. In this paper, we show vector quantization to be an effective compression technique for triangle mesh vertex data. We present predictive vector quantization methods using unstructured code books as well as a product code pyramid vector quantizer. The technique is compatible with most existing mesh connectivity encoding schemes and does not require the use of entropy coding. In addition to compression, our vector quantization scheme can be used for complexity reduction by accelerating the computation of linear vertex transformations. Consequently, an encoded set of vertices can be both decoded and transformed in approximately 60 percent of the time required by a conventional method without compression.

[1]  Jerry D. Gibson,et al.  Distributions of the Two-Dimensional DCT Coefficients for Images , 1983, IEEE Trans. Commun..

[2]  Valerio Pascucci,et al.  Single Resolution Compression of Arbitrary Triangular Meshes with Properties , 1999, Data Compression Conference.

[3]  Kenneth Rose,et al.  The asymptotic closed-loop approach to predictive vector quantizer design with application in video coding , 2001, IEEE Trans. Image Process..

[4]  Steven Skiena,et al.  Optimizing triangle strips for fast rendering , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[5]  Craig Gotsman,et al.  Triangle Mesh Compression , 1998, Graphics Interface.

[6]  C.-C. Jay Kuo,et al.  Progressive coding of 3-D graphic models , 1998, Proc. IEEE.

[7]  Allen Gersho,et al.  Vector Predictive Coding of Speech at 16 kbits/s , 1985, IEEE Trans. Commun..

[8]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[9]  Wolfgang Straßer,et al.  Real time compression of triangle mesh connectivity , 1998, SIGGRAPH.

[10]  K A Birney,et al.  On the modeling of DCT and subband image data for compression , 1995, IEEE Trans. Image Process..

[11]  Jovan Popovic,et al.  Progressive simplicial complexes , 1997, SIGGRAPH.

[12]  Teresa H. Y. Meng,et al.  Error-resilient pyramid vector quantization for image compression , 1998, IEEE Trans. Image Process..

[13]  Gabriel Taubin,et al.  Progressive forest split compression , 1998, SIGGRAPH.

[14]  Andrei Khodakovsky,et al.  Progressive geometry compression , 2000, SIGGRAPH.

[15]  Gabriel Taubin,et al.  Geometric compression through topological surgery , 1998, TOGS.

[16]  David Levin,et al.  Progressive Compression of Arbitrary Triangular Meshes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[17]  P. Filip,et al.  A fixed-rate product pyramid vector quantization using a Bayesian model , 1992, [Conference Record] GLOBECOM '92 - Communications for Global Users: IEEE.

[18]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[19]  Joze Mohorko,et al.  Fast algorithm for pyramid vector quantization , 2001, IEEE Signal Processing Letters.

[20]  Renato Pajarola,et al.  Compressed Progressive Meshes , 2000, IEEE Trans. Vis. Comput. Graph..

[21]  T.H. Meng,et al.  A low-power video-rate pyramid VQ decoder , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[22]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[23]  David B. Kirk Unsolved problems and opportunities for high-quality, high-performance 3D graphics on a PC platform , 1998, Workshop on Graphics Hardware.

[24]  Mike M. Chow,et al.  Optimized geometry compression for real-time rendering , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[25]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[26]  Hugues Hoppe,et al.  Optimization of mesh locality for transparent vertex caching , 1999, SIGGRAPH.

[27]  Thomas R. Fischer,et al.  A pyramid vector quantizer , 1986, IEEE Trans. Inf. Theory.

[28]  Gabriel Taubin,et al.  Geometry coding and VRML , 1998, Proc. IEEE.

[29]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..