Critical period plasticity in local cortical circuits

Neuronal circuits in the brain are shaped by experience during 'critical periods' in early postnatal life. In the primary visual cortex, this activity-dependent development is triggered by the functional maturation of local inhibitory connections and driven by a specific, late-developing subset of interneurons. Ultimately, the structural consolidation of competing sensory inputs is mediated by a proteolytic reorganization of the extracellular matrix that occurs only during the critical period. The reactivation of this process, and subsequent recovery of function in conditions such as amblyopia, can now be studied with realistic circuit models that might generalize across systems.

[1]  C W LANGE,et al.  Visual development. , 1950, The Optometric weekly.

[2]  D. Hubel,et al.  SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE. , 1963, Journal of neurophysiology.

[3]  D. Hubel,et al.  Functional architecture of area 17 in normal and monocularly deprived macaque monkeys. , 1976, Cold Spring Harbor symposia on quantitative biology.

[4]  C. Malsburg,et al.  How patterned neural connections can be set up by self-organization , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[5]  M. Stryker,et al.  Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. , 1978, The Journal of physiology.

[6]  M. Cynader,et al.  Disruption of cortical activity prevents ocular dominance changes in monocularly deprived kittens , 1984, Nature.

[7]  M. Stryker,et al.  Neural plasticity without postsynaptic action potentials: less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[8]  K. Miller,et al.  Ocular dominance column development: analysis and simulation. , 1989, Science.

[9]  W Singer,et al.  Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  G. Mower,et al.  The effect of dark rearing on the time course of the critical period in cat visual cortex. , 1991, Brain research. Developmental brain research.

[11]  E. Castrén,et al.  Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Eric R. Kandel,et al.  Tissue-plasminogen activator is induced as an immediate–early gene during seizure, kindling and long-term potentiation , 1993, Nature.

[13]  F. Ebner,et al.  Experience-dependent plasticity in adult rat barrel cortex. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Biancheri,et al.  Electrical status epilepticus in childhood: treatment with short cycles of high dosage benzodiazepine (preliminary note) , 1993, Brain and Development.

[15]  J. Fritschy,et al.  Selective Allocation of GABAA Receptors Containing the α1 Subunit to Neurochemically Distinct Subpopulations of Rat Hippocampal Interneurons , 1994, The European journal of neuroscience.

[16]  L. Maffei,et al.  Functional postnatal development of the rat primary visual cortex and the role of visual experience: Dark rearing and monocular deprivation , 1994, Vision Research.

[17]  S Löwel,et al.  Ocular dominance column development: strabismus changes the spacing of adjacent columns in cat visual cortex. , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  P G Nelson,et al.  Proteolytic activity, synapse elimination, and the Hebb synapse. , 1994, Journal of neurobiology.

[19]  M P Stryker,et al.  Control of thalamocortical afferent rearrangement by postsynaptic activity in developing visual cortex. , 1994, Science.

[20]  I. Ferrer,et al.  The development of parvalbumin-immunoreactivity in the neocortex of the mouse. , 1994, Brain research. Developmental brain research.

[21]  Xiaoqin Wang,et al.  Remodelling of hand representation in adult cortex determined by timing of tactile stimulation , 1995, Nature.

[22]  W. Sieghart,et al.  Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. , 1995, Pharmacological reviews.

[23]  S. Nakanishi,et al.  Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[24]  B. Rockstroh,et al.  Increased Cortical Representation of the Fingers of the Left Hand in String Players , 1995, Science.

[25]  Kristina D. Micheva,et al.  An anatomical substrate for experience-dependent plasticity of the rat barrel field cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[26]  K. Miller,et al.  Synaptic Economics: Competition and Cooperation in Synaptic Plasticity , 1996, Neuron.

[27]  P. Somogyi,et al.  Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Horton,et al.  Intrinsic Variability of Ocular Dominance Column Periodicity in Normal Macaque Monkeys , 1996, The Journal of Neuroscience.

[29]  横井 峰人 Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb , 1996 .

[30]  M P Stryker,et al.  Plasticity of geniculocortical afferents following brief or prolonged monocular occlusion in the cat , 1996, The Journal of comparative neurology.

[31]  Y. Yoshimura,et al.  Enhancement of mRNA expression of tissue-type plasminogen activator by l-threo-3,4-dihydroxyphenylserine in association with ocular dominance plasticity , 1996, Neuroscience Letters.

[32]  S. Strickland,et al.  Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  M P Stryker,et al.  Experience-Dependent Plasticity of Binocular Responses in the Primary Visual Cortex of the Mouse , 1996, The Journal of Neuroscience.

[34]  P. Somogyi,et al.  Differential synaptic localization of two major y-aminobutyric acid type A receptor a subunits on hippocampal pyramidal cells , 1996 .

[35]  T. Yagi,et al.  Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Hirsch,et al.  Distinct cortical areas associated with native and second languages , 1997, Nature.

[37]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[38]  S. Mahata,et al.  Tissue Plasminogen Activator (t-PA) Is Targeted to the Regulated Secretory Pathway , 1997, The Journal of Biological Chemistry.

[39]  H. Monyer,et al.  NR2A Subunit Expression Shortens NMDA Receptor Synaptic Currents in Developing Neocortex , 1997, The Journal of Neuroscience.

[40]  J. DeFelipe Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex , 1997, Journal of Chemical Neuroanatomy.

[41]  M. Stryker,et al.  Local GABA circuit control of experience-dependent plasticity in developing visual cortex. , 1998, Science.

[42]  M. Kilgard,et al.  Cortical map reorganization enabled by nucleus basalis activity. , 1998, Science.

[43]  C. Meliza,et al.  Real-time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid. , 1998, Molecular biology of the cell.

[44]  D. L. Martin,et al.  Two isoforms of glutamate decarboxylase: why? , 1998, Trends in pharmacological sciences.

[45]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[46]  Mary Chen,et al.  Tissue Plasminogen Activator Contributes to the Late Phase of LTP and to Synaptic Growth in the Hippocampal Mossy Fiber Pathway , 1998, Neuron.

[47]  R. Oostenveld,et al.  Increased auditory cortical representation in musicians , 1998, Nature.

[48]  J. L. Fuchs,et al.  Effects of whisker trimming on GABAA receptor binding in the barrel cortex of developing and adult rats , 1998, The Journal of comparative neurology.

[49]  C. Müller,et al.  Tissue plasminogen activator mediates reverse occlusion plasticity in visual cortex , 1998, Nature Neuroscience.

[50]  O. Paulsen,et al.  A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity , 1998, Trends in Neurosciences.

[51]  E I Knudsen,et al.  Capacity for plasticity in the adult owl auditory system expanded by juvenile experience. , 1998, Science.

[52]  Michael P. Stryker,et al.  Anatomical Correlates of Functional Plasticity in Mouse Visual Cortex , 1999, The Journal of Neuroscience.

[53]  P. Magistretti,et al.  BDNF stimulates expression, activity and release of tissue‐type plasminogen activator in mouse cortical neurons , 1999, The European journal of neuroscience.

[54]  A. Reichenbach,et al.  Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations , 1999, Brain Research.

[55]  L. Maffei,et al.  BDNF Regulates the Maturation of Inhibition and the Critical Period of Plasticity in Mouse Visual Cortex , 1999, Cell.

[56]  E. Knudsen,et al.  Functional selection of adaptive auditory space map by GABAA-mediated inhibition. , 1999, Science.

[57]  W Singer,et al.  Genetic and epigenetic regulation of NMDA receptor expression in the rat visual cortex , 1999, The European journal of neuroscience.

[58]  M. Stryker,et al.  Synaptic Density in Geniculocortical Afferents Remains Constant after Monocular Deprivation in the Cat , 1999, The Journal of Neuroscience.

[59]  D. Copenhagen,et al.  The role of the synthetic enzyme GAD65 in the control of neuronal γ-aminobutyric acid release , 1999 .

[60]  Mark F. Bear,et al.  Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo , 1999, Nature Neuroscience.

[61]  E. Shimizu,et al.  Genetic enhancement of learning and memory in mice , 1999, Nature.

[62]  A. Erisir,et al.  Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. , 1999, Journal of neurophysiology.

[63]  J. Roeper,et al.  Activity‐dependent formation of perforated synapses in cultured hippocampal neurons , 1999, The European journal of neuroscience.

[64]  J. Sanes,et al.  Can molecules explain long-term potentiation? , 1999, Nature Neuroscience.

[65]  E. Knudsen,et al.  Traces of learning in the auditory localization pathway. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[66]  M. Fagiolini,et al.  Inhibitory threshold for critical-period activation in primary visual cortex , 2000, Nature.

[67]  J. Trachtenberg,et al.  Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex. , 2000, Science.

[68]  G. Mower,et al.  Developmental changes in the expression of NMDA receptor subunits (NR1, NR2A, NR2B) in the cat visual cortex and the effects of dark rearing. , 2000, Brain research. Molecular brain research.

[69]  G. Orban,et al.  Cooperative changes in GABA, glutamate and activity levels: the missing link in cortical plasticity , 2000, The European journal of neuroscience.

[70]  J. Vincent,et al.  Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[71]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[72]  Daniel E. Feldman,et al.  Inhibition and plasticity , 2000, Nature Neuroscience.

[73]  Nicoletta Berardi,et al.  Critical periods during sensory development , 2000, Current Opinion in Neurobiology.

[74]  S. Yoshida,et al.  Synaptic microenvironments — structural plasticity, adhesion molecules, proteases and their inhibitors , 2000, Neuroscience Research.

[75]  David R. Colman,et al.  Molecular Modification of N-Cadherin in Response to Synaptic Activity , 2000, Neuron.

[76]  R. Weiler,et al.  Expression patterns of connexin genes in mouse retina , 2000, The Journal of comparative neurology.

[77]  J. Lodder,et al.  Diazepam Treatment to Increase the Cerebral GABAergic Activity in Acute Stroke: A Feasibility Study in 104 Patients , 2000, Cerebrovascular Diseases.

[78]  U. Rudolph,et al.  GABA(A) receptor subtypes: dissecting their pharmacological functions. , 2001, Trends in pharmacological sciences.

[79]  M. Bear,et al.  Visual Experience and Deprivation Bidirectionally Modify the Composition and Function of NMDA Receptors in Visual Cortex , 2001, Neuron.

[80]  Alison L. Barth,et al.  NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses , 2001, Nature Neuroscience.

[81]  T. Bliss,et al.  A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories , 2001, Nature Neuroscience.

[82]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[83]  M. Merzenich,et al.  Cortical remodelling induced by activity of ventral tegmental dopamine neurons , 2001, Nature.

[84]  M P Stryker,et al.  Rapid Anatomical Plasticity of Horizontal Connections in the Developing Visual Cortex , 2001, The Journal of Neuroscience.

[85]  M. Schachner,et al.  Reduced Perisomatic Inhibition, Increased Excitatory Transmission, and Impaired Long-Term Potentiation in Mice Deficient for the Extracellular Matrix Glycoprotein Tenascin-R , 2001, Molecular and Cellular Neuroscience.

[86]  E. Cherubini,et al.  Generating diversity at GABAergic synapses. , 2001, Trends in neurosciences.

[87]  Miles A. Whittington,et al.  Impaired Electrical Signaling Disrupts Gamma Frequency Oscillations in Connexin 36-Deficient Mice , 2001, Neuron.

[88]  E. Cherubini,et al.  Generating diversity at GAB Aergic synapses , 2001, Trends in Neurosciences.

[89]  B. Connors,et al.  Synchronous Activity of Inhibitory Networks in Neocortex Requires Electrical Synapses Containing Connexin36 , 2001, Neuron.

[90]  Bernardo Rudy,et al.  Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing , 2001, Trends in Neurosciences.

[91]  M. Crair,et al.  Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition , 2001, Neuron.

[92]  T. Hensch,et al.  Experience-Dependent Plasticity of Mouse Visual Cortex in the Absence of the Neuronal Activity-Dependent Markeregr1/zif268 , 2001, The Journal of Neuroscience.

[93]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[94]  G. Mower,et al.  Developmental changes in the expression of GABA(A) receptor subunits (alpha(1), alpha(2), alpha(3)) in the cat visual cortex and the effects of dark rearing. , 2001, Brain research. Molecular brain research.

[95]  S. Hestrin,et al.  Electrical synapses between Gaba-Releasing interneurons , 2001, Nature Reviews Neuroscience.

[96]  P. Adorján,et al.  Axonal topography of cortical basket cells in relation to orientation, direction, and ocular dominance maps , 2001, The Journal of comparative neurology.

[97]  Y. Dudai Molecular bases of long-term memories: a question of persistence , 2002, Current Opinion in Neurobiology.

[98]  T. Hensch,et al.  Experience-dependent plasticity without long-term depression by type 2 metabotropic glutamate receptors in developing visual cortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[99]  P. Somogyi,et al.  Cell Type- and Input-Specific Differences in the Number and Subtypes of Synaptic GABAA Receptors in the Hippocampus , 2002, The Journal of Neuroscience.

[100]  M. Stryker,et al.  Rapid Ocular Dominance Plasticity Requires Cortical but Not Geniculate Protein Synthesis , 2002, Neuron.

[101]  E. Ziff,et al.  Receptor trafficking and the plasticity of excitatory synapses , 2002, Current Opinion in Neurobiology.

[102]  T. Hensch,et al.  Permissive proteolytic activity for visual cortical plasticity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[103]  A. Kirkwood,et al.  Dark Rearing Alters the Development of GABAergic Transmission in Visual Cortex , 2002, The Journal of Neuroscience.

[104]  F. Wolf,et al.  Genetic Influence on Quantitative Features of Neocortical Architecture , 2002, The Journal of Neuroscience.

[105]  L. Maffei,et al.  Reactivation of Ocular Dominance Plasticity in the Adult Visual Cortex , 2002, Science.

[106]  I. Katona,et al.  In Vivo Labeling of Parvalbumin-Positive Interneurons and Analysis of Electrical Coupling in Identified Neurons , 2002, The Journal of Neuroscience.

[107]  Eric I. Knudsen,et al.  Incremental training increases the plasticity of the auditory space map in adult barn owls , 2002, Nature.

[108]  L. Maffei,et al.  Heterozygous Knock-Out Mice for Brain-Derived Neurotrophic Factor Show a Pathway-Specific Impairment of Long-Term Potentiation But Normal Critical Period for Monocular Deprivation , 2002, The Journal of Neuroscience.

[109]  E. Schuman,et al.  Depolarization Drives β-Catenin into Neuronal Spines Promoting Changes in Synaptic Structure and Function , 2002, Neuron.

[110]  Niraj S. Desai,et al.  Critical periods for experience-dependent synaptic scaling in visual cortex , 2002, Nature Neuroscience.

[111]  L. C. Katz,et al.  Development of cortical circuits: Lessons from ocular dominance columns , 2002, Nature Reviews Neuroscience.

[112]  D. Mitchell,et al.  Gene expression patterns during enhanced periods of visual cortex plasticity , 2002, Neuroscience.

[113]  N. Kasthuri,et al.  Long-term dendritic spine stability in the adult cortex , 2002, Nature.

[114]  S. Itohara,et al.  Lesion-Induced Thalamocortical Axonal Plasticity in the S1 Cortex Is Independent of NMDA Receptor Function in Excitatory Cortical Neurons , 2002, The Journal of Neuroscience.

[115]  D. L. Adams,et al.  Shadows Cast by Retinal Blood Vessels Mapped in Primary Visual Cortex , 2002, Science.

[116]  G. Knott,et al.  Formation of Dendritic Spines with GABAergic Synapses Induced by Whisker Stimulation in Adult Mice , 2002, Neuron.

[117]  D. Feldman,et al.  Long-term depression induced by sensory deprivation during cortical map plasticity in vivo , 2003, Nature Neuroscience.

[118]  T. Hensch,et al.  Experience-dependent slow-wave sleep development , 2003, Nature Neuroscience.

[119]  P. Jonas,et al.  Kv3 Potassium Conductance is Necessary and Kinetically Optimized for High-Frequency Action Potential Generation in Hippocampal Interneurons , 2003, The Journal of Neuroscience.

[120]  M. Schachner,et al.  Extracellular matrix molecules and synaptic plasticity , 2003, Nature Reviews Neuroscience.

[121]  T. Hensch,et al.  Reciprocal interaction of sleep and synaptic plasticity. , 2003, Molecular interventions.

[122]  M. Bear,et al.  Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation , 2003, Nature Neuroscience.

[123]  L. Maffei,et al.  Molecular basis of plasticity in the visual cortex , 2003, Trends in Neurosciences.

[124]  M. Bear,et al.  NMDA Receptor-Dependent Ocular Dominance Plasticity in Adult Visual Cortex , 2003, Neuron.

[125]  D. J. Hinkle,et al.  β Subunit Phosphorylation Selectively Increases Fast Desensitization and Prolongs Deactivation of α1β1γ2L and α1β3γ2L GABAA Receptor Currents , 2003, The Journal of Neuroscience.

[126]  R. Douglas,et al.  Developmental plasticity of mouse visual acuity , 2003, The European journal of neuroscience.

[127]  T. Tsumoto,et al.  Long-Term Depression Is Not Induced by Low-Frequency Stimulation in Rat Visual Cortex In Vivo: A Possible Preventing Role of Endogenous Brain-Derived Neurotrophic Factor , 2003, The Journal of Neuroscience.

[128]  L. Maffei,et al.  Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[129]  Takao K. Hensch,et al.  Rapid Critical Period Induction by Tonic Inhibition in Visual Cortex , 2003, The Journal of Neuroscience.

[130]  N. Kasthuri,et al.  The role of neuronal identity in synaptic competition , 2003, Nature.

[131]  G. Feng,et al.  Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition , 2003, Nature.

[132]  M. Merzenich,et al.  Model of autism: increased ratio of excitation/inhibition in key neural systems , 2003, Genes, brain, and behavior.

[133]  William J Tyler,et al.  Miniature synaptic transmission and BDNF modulate dendritic spine growth and form in rat CA1 neurones , 2003, The Journal of physiology.

[134]  G. Rager,et al.  Expression of neuroserpin in the visual cortex of the mouse during the developmental critical period , 2003, The European journal of neuroscience.

[135]  F. Johnson,et al.  Cannabinoid exposure alters learning of zebra finch vocal patterns. , 2003, Brain research. Developmental brain research.

[136]  K. Svoboda,et al.  Experience Strengthening Transmission by Driving AMPA Receptors into Synapses , 2003, Science.

[137]  Takao K. Hensch,et al.  Controlling the critical period , 2003, Neuroscience Research.

[138]  Mriganka Sur,et al.  Motility of dendritic spines in visual cortex in vivo: Changes during the critical period and effects of visual deprivation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[139]  T. Freund,et al.  Role of endogenous cannabinoids in synaptic signaling. , 2003, Physiological reviews.

[140]  Hisashi Mori,et al.  Separable features of visual cortical plasticity revealed by N-methyl-d-aspartate receptor 2A signaling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[141]  Nobuko Mataga,et al.  Experience-Dependent Pruning of Dendritic Spines in Visual Cortex by Tissue Plasminogen Activator , 2004, Neuron.

[142]  G. Knott,et al.  Experience and Activity-Dependent Maturation of Perisomatic GABAergic Innervation in Primary Visual Cortex during a Postnatal Critical Period , 2004, The Journal of Neuroscience.

[143]  Takao K. Hensch,et al.  Excitatory-Inhibitory Balance , 2004, Springer US.

[144]  H. T. Walter,et al.  ANALYSIS AND SIMULATION OF , 2004 .

[145]  Guosong Liu,et al.  Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites , 2004, Nature Neuroscience.

[146]  T. Hensch,et al.  Specific GABA(A) circuits in brain development and therapy. , 2004, Biochemical pharmacology.

[147]  Mriganka Sur,et al.  Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation , 2004, Neuron.

[148]  L. Maffei,et al.  Environmental enrichment prevents effects of dark-rearing in the rat visual cortex , 2004, Nature Neuroscience.

[149]  Nicoletta Berardi,et al.  Extracellular Matrix and Visual Cortical Plasticity Freeing the Synapse , 2004, Neuron.

[150]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[151]  O. Schaad,et al.  Gene expression analysis of the critical period in the visual cortex , 2004, Molecular and Cellular Neuroscience.

[152]  H. Sakaguchi Sex differences in the developmental changes of GABAergic neurons in zebra finch song control nuclei , 1996, Experimental Brain Research.

[153]  R. D. Freeman,et al.  Blockade of intracortical inhibition in kitten striate cortex: Effects on receptive field properties and associated loss of ocular dominance plasticity , 2004, Experimental Brain Research.

[154]  S. Nelson,et al.  Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation , 2004, Nature Neuroscience.

[155]  M. Stryker,et al.  Columnar Architecture Sculpted by GABA Circuits in Developing Cat Visual Cortex , 2004, Science.

[156]  N. Daw,et al.  Requirement for the RIIβ Isoform of PKA, But Not Calcium-Stimulated Adenylyl Cyclase, in Visual Cortical Plasticity , 2004, The Journal of Neuroscience.

[157]  Petti T. Pang,et al.  Cleavage of proBDNF by tPA/Plasmin Is Essential for Long-Term Hippocampal Plasticity , 2004, Science.

[158]  Richard S. J. Frackowiak,et al.  Neurolinguistics: Structural plasticity in the bilingual brain , 2004, Nature.

[159]  E. Kandel,et al.  A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB. , 2004, Learning & memory.

[160]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[161]  M. Stryker,et al.  Cortical activity blockade prevents ocular dominance plasticity in the kitten visual cortex , 2004, Experimental Brain Research.

[162]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[163]  N. Daw,et al.  LTP and LTD vary with layer in rodent visual cortex , 2004, Vision Research.

[164]  Alan Carleton,et al.  Interplay between Local GABAergic Interneurons and Relay Neurons Generates γ Oscillations in the Rat Olfactory Bulb , 2004, The Journal of Neuroscience.

[165]  J. Zhu,et al.  Chandelier Cells Control Excessive Cortical Excitation: Characteristics of Whisker-Evoked Synaptic Responses of Layer 2/3 Nonpyramidal and Pyramidal Neurons , 2004, The Journal of Neuroscience.

[166]  M. Fagiolini,et al.  Specific GABAA Circuits for Visual Cortical Plasticity , 2004, Science.

[167]  M. Sheng,et al.  Role of NMDA Receptor Subtypes in Governing the Direction of Hippocampal Synaptic Plasticity , 2004, Science.

[168]  Karel Svoboda,et al.  Subcellular domain-restricted GABAergic innervation in primary visual cortex in the absence of sensory and thalamic inputs , 2004, Nature Neuroscience.

[169]  Mu-ming Poo,et al.  Shrinkage of Dendritic Spines Associated with Long-Term Depression of Hippocampal Synapses , 2004, Neuron.

[170]  Z. Bashir,et al.  Benzodiazepine impairment of perirhinal cortical plasticity and recognition memory , 2004, The European journal of neuroscience.

[171]  T. Hensch Critical period regulation. , 2004, Annual review of neuroscience.

[172]  Guillermo A. Cecchi,et al.  Unsupervised Learning and Adaptation in a Model of Adult Neurogenesis , 2001, Journal of Computational Neuroscience.

[173]  M. DiFiglia,et al.  Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[174]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.

[175]  D. Maurer,et al.  Multiple sensitive periods in human visual development: evidence from visually deprived children. , 2005, Developmental psychobiology.

[176]  Eric I Knudsen,et al.  Anatomical traces of juvenile learning in the auditory system of adult barn owls , 2005, Nature Neuroscience.

[177]  Rudolf Jaenisch,et al.  Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[178]  Yasunori Hayashi,et al.  Dendritic Spine Geometry: Functional Implication and Regulation , 2005, Neuron.

[179]  David G. Jones,et al.  Development of human visual cortex: a balance between excitatory and inhibitory plasticity mechanisms. , 2005, Developmental psychobiology.

[180]  Stefan Skare,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication Extensive Blockinpiano Blockinpracticing Blockinhas Blockinregionally Specific Blockineffects Blockinon Blockinwhite Blockinmatter Blockindevelopment , 2022 .

[181]  S. Wang,et al.  Graded bidirectional synaptic plasticity is composed of switch-like unitary events. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[182]  A. Marty,et al.  Developmental Changes in Parvalbumin Regulate Presynaptic Ca2+ Signaling , 2005, The Journal of Neuroscience.

[183]  N. Daw,et al.  Reversible blockade of experience-dependent plasticity by calcineurin in mouse visual cortex , 2005, Nature Neuroscience.

[184]  P. Gaspar,et al.  Dissociating Barrel Development and Lesion-Induced Plasticity in the Mouse Somatosensory Cortex , 2005, The Journal of Neuroscience.

[185]  Sreedharan Sajikumar,et al.  Protein synthesis-dependent long-term functional plasticity: methods and techniques , 2005, Current Opinion in Neurobiology.

[186]  Michael A Long,et al.  Abrupt Maturation of a Spike-Synchronizing Mechanism in Neocortex , 2005, The Journal of Neuroscience.

[187]  N. Newman The Visual Neurosciences , 2005 .

[188]  Patrick O Kanold,et al.  Multiple periods of functional ocular dominance plasticity in mouse visual cortex , 2005, Nature Neuroscience.

[189]  N. Daw,et al.  Experience-Driven Plasticity of Visual Cortex Limited by Myelin and Nogo Receptor , 2005, Science.

[190]  Heinke,et al.  Spike Transmission and Synchrony Detection in Networks of GABAergic Interneurons , 2022 .