A state-of-the-art review on fatigue life prediction methods for metal structures

Abstract Metals are the most widely used materials in engineering structures, and one of the most common failure modes of metal structures is fatigue failure. Although metal fatigue has been studied for more than 160 years, many problems still remain unsolved. In this article, a state-of-the-art review of metal fatigue is carried out, with particular emphasis on the latest developments in fatigue life prediction methods. All factors which affect the fatigue life of metal structures are grouped into four categories: material, structure, loading, and environment. The effects of these factors on fatigue behavior are also addressed. Finally, potential problems to be resolved in the near future are pointed out.

[1]  M. Klesnil,et al.  Fatigue of metallic materials , 1980 .

[2]  Andrea Carpinteri,et al.  Handbook of fatigue crack propagation in metallic structures , 1994 .

[3]  David J. Norton,et al.  Mobile Offshore Platform Wind Loads , 1981 .

[4]  D. Shang,et al.  A new approach to the determination of fatigue crack initiation size , 1998 .

[5]  W. Heinrich,et al.  Kocańda, S., Fatigue Failure of Metals. Alphen aan den Rijn, Sijthoff & Noordhoff Int. Publ. 1978. XIII, 368 S , 1979 .

[6]  K. J. Miller,et al.  THE BEHAVIOUR OF SHORT FATIGUE CRACKS AND THEIR INITIATION PART II‐A GENERAL SUMMARY , 1987 .

[7]  Ali Fatemi,et al.  Cumulative fatigue damage mechanisms and quantifying parameters : A literature review , 1998 .

[8]  K. Sadananda,et al.  A REVIEW OF CRACK CLOSURE, FATIGUE CRACK THRESHOLD AND RELATED PHENOMENA , 1994 .

[9]  J. Newman,et al.  Fatigue-life prediction methodology using small-crack theory , 1999 .

[10]  Ali Fatemi,et al.  Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials , 1998 .

[11]  B. J. Vickery,et al.  Wind Loads On Semisubmersible Offshore Platforms , 1986 .

[12]  A. Navarro,et al.  A MICROSTRUCTURALLY-SHORT FATIGUE CRACK GROWTH EQUATION , 1988 .

[13]  B. J. Vickery,et al.  An Investigation of Dynamic Wind Loads on Offshore Platforms , 1985 .

[14]  Peter Joseph Edward Forsyth,et al.  The physical basis of metal fatigue , 1969 .

[15]  Daniel Kujawski,et al.  Correlation of long- and physically short-cracks growth in aluminum alloys , 2001 .

[16]  H. Saunders,et al.  Book Reviews : AN INTRODUCTION TO RANDOM VIBRATION AND SPECTRAL ANALYSIS D.E. Newland Longman's Inc., New York, NY, 1978 , 1980 .

[17]  E. Y. Chen,et al.  Near-threshold fatigue: a review , 1999 .

[18]  Jaap Schijve Significance of Fatigue Cracks in Micro-Range and Macro-Range , 1967 .

[19]  Daniel Kujawski,et al.  A new (ΔK+Kmax)0.5 driving force parameter for crack growth in aluminum alloys , 2001 .

[20]  J. H. Ong An improved technique for the prediction of axial fatique life from tensile data , 1993 .

[21]  S. Manson Fatigue: A complex subject—Some simple approximations , 1965 .

[22]  E. Wolf Fatigue crack closure under cyclic tension , 1970 .

[23]  J E Aguirre,et al.  ESTIMATION OF WIND FORCES ON OFFSHORE DRILLING PLATFORMS , 1974 .

[24]  M K Ochi ON PREDICTION OF EXTREME VALUES , 1973 .

[25]  P. Paris A rational analytic theory of fatigue , 1961 .

[26]  Arthur J. McEvily,et al.  On the dependence of the rate of fatigue crack growth on the σna(2a) parameter , 2001 .

[27]  J. Kaimal,et al.  Spectral Characteristics of Surface-Layer Turbulence , 1972 .

[28]  Chao Yu Hung,et al.  Fatigue life estimation under multiaxial loadings , 1999 .

[29]  J. W. Morris,et al.  The compatibility of crack closure and Kmax dependent models of fatigue crack growth , 1999 .

[30]  D. Newland An introduction to random vibrations and spectral analysis , 1975 .

[31]  M. Skorupa Load interaction effects during fatigue crack growth under variable amplitude loading : A literature review. Part I : Empirical trends , 1998 .

[32]  A. Fatemi,et al.  Strain-controlled fatigue properties of steels and some simple approximations , 2000 .

[33]  Daniel Kujawski,et al.  A fatigue crack driving force parameter with load ratio effects , 2001 .

[34]  C. Bathias,et al.  Near-threshold fatigue crack growth behavior of a stainless steel at ultrasonic frequency , 2000 .

[35]  James C. Newman,et al.  The Merging of Fatigue and Fracture Mechanics Concepts: A Historical Perspective , 1998 .

[36]  Robert O. Ritchie,et al.  Small fatigue cracks: A statement of the problem and potential solutions , 1986 .

[37]  Erkki Niemi,et al.  Fatigue crack propagation model based on a local strain approach , 1999 .

[38]  A. J. McEvily,et al.  On the Threshold for Fatigue Crack Growth , 1978 .

[39]  A. F. Hobbacher,et al.  Fatigue design of welded joints and components , 1996 .

[40]  C Boller,et al.  Materials Data for Cyclic Loading , 1990 .

[41]  E. R. Rios,et al.  The Behaviour of short fatigue cracks , 1986 .

[42]  Daniel Kujawski,et al.  A unified approach to mean stress effect on fatigue threshold conditions , 1995 .

[43]  Daniel Kujawski,et al.  Enhanced model of partial crack closure for correlation of R-ratio effects in aluminum alloys , 2001 .

[44]  K. J. Miller,et al.  THE BEHAVIOUR OF SHORT FATIGUE CRACKS AND THEIR INITIATION PART I—A REVIEW OF TWO RECENT BOOKS , 1987 .

[45]  D. Krajcinovic,et al.  Introduction to continuum damage mechanics , 1986 .

[46]  H. O. Fuchs,et al.  Metal fatigue in engineering , 2001 .

[47]  U. Muralidharan,et al.  A Modified Universal Slopes Equation for Estimation of Fatigue Characteristics of Metals , 1988 .

[48]  Michifumi Yuasa,et al.  Influence of Corrosion Wastage on the Fatigue Strength of Fillet Welded Joints , 1998 .

[49]  Y. Fujimoto,et al.  Propagation and non-propagation of small fatigue cracks , 2000 .

[50]  J. H. Ong An evaluation of existing methods for the prediction of axial fatigue life from tensile data , 1993 .

[51]  R. Jaccard,et al.  Crack Closure: Correlation and Confusion , 1988 .

[52]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[53]  M. K. Ochi,et al.  Wind Turbulent Spectra For Design Consideration Of Offshore Structures , 1988 .

[54]  Paul C. Paris,et al.  An evaluation of ΔKeff estimation procedures on 6061-T6 and 2024-T3 aluminum alloys , 1999 .

[55]  G Marquis,et al.  On the multiaxial fatigue of weldments: Experimental results, design code and critical plane approaches , 1998 .

[56]  Yuki Kobayashi,et al.  Corrosion Fatigue Strength of Notched Specimens of a Ship Structural Steel , 1997 .

[57]  Emil Simiu,et al.  Wind Spectra and Dynamic Alongwind Response , 1974 .

[58]  O. Basquin The exponential law of endurance tests , 1910 .

[59]  Bathias There is no infinite fatigue life in metallic materials , 1999 .

[60]  Cetin Morris Sonsino,et al.  Fatigue assessment of welded joints by local approaches Second edition , 2007 .

[61]  E. W. C. Wilkins,et al.  Cumulative damage in fatigue , 1956 .

[62]  Jean-Louis Chaboche,et al.  A NON‐LINEAR CONTINUOUS FATIGUE DAMAGE MODEL , 1988 .

[63]  T. Seeger,et al.  Materials data for cyclic loading, Supplement 1 , 1990 .

[64]  R. Forman,et al.  Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures , 1967 .

[65]  K. N. Smith A Stress-Strain Function for the Fatigue of Metals , 1970 .

[66]  Michael T. Todinov Necessary and sufficient condition for additivity in the sense of the Palmgren–Miner rule , 2001 .

[67]  Ji-Ho Song,et al.  Detailed evaluation of methods for estimation of fatigue properties , 1995 .

[68]  Walter Schütz,et al.  A history of fatigue , 1996 .

[69]  H. Saunders,et al.  Advanced Fracture Mechanics , 1985 .

[70]  A. J. Mcevily,et al.  Crack opening displacement and the rate of fatigue crack growth , 1972 .

[71]  Grzegorz Glinka,et al.  Relations Between the Strain Energy Density Distribution and Elastic-Plastic Stress-Strain Fields Near Cracks and Notches and Fatigue Life Calculation , 1988 .