Ring structure theorems and arithmetic comprehension
暂无分享,去创建一个
[1] Joseph R. Mileti,et al. Ideals in computable rings , 2007 .
[2] Joseph R. Mileti,et al. Subspaces of computable vector spaces , 2007 .
[3] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[4] Frank W. Anderson,et al. Rings and Categories of Modules , 1974 .
[5] Chris J. Conidis. Chain conditions in computable rings , 2010 .
[6] Huishan Wu,et al. The Complexity of Radicals and Socles of Modules , 2020, Notre Dame J. Formal Log..
[7] Tsit Yuen Lam,et al. A first course in noncommutative rings , 2002 .
[8] J. Drozd. IDEALS IN COMMUTATIVE RINGS , 1976 .
[9] Stephen G. Simpson,et al. Countable algebra and set existence axioms , 1983, Ann. Pure Appl. Log..
[10] T. Lenagan. T. Y. Lam A first course in noncommutative rings (Graduate Texts in Mathematics 131, Springer-Verlag, Heidelberg1991), xvi + 397 pp., 3 540 97523 3, £35.50. , 1994, Proceedings of the Edinburgh Mathematical Society.