Molecular weight distribution of regular asphalts from dynamic material functions

Dynamic material functions are among the most sensitive tools for determining the molecular weight distribution of rheologically complex systems. The phase angle of the complex modulus especially is sensitive to the molecular weight of the studied material; it can therefore be used as the input to the inverse problem of determining the molecular weight from this important dynamic material function. Molecular weight distributions of several regular asphalts are calculated using the phase angle and compared with molecular weight distribution obtained by gel permeation chromatography. The problems of calculating molecular weight distributions from rheological parameters are also discussed.RésuméLes fonctions de matériau dynamique sont parmi les outils les plus sensibles pour déterminer la distribution de masse moléculaire des systèmes rhéologiques complexes. L'angle de phase du module complexe est spécialement sensible à la masse moléculaire du matériau étudié; il peut donc être utilisé comme donnée d'entrée pour le problème inverse afin de déterminer la masse moléculaire à partir de cette importante fonction de matériau dynamique. Les distributions de masse moléculaire de plusieurs asphaltes réguliers sont calculées en utilisant cet angle de phase et ensuite comparées avec la distribution de masse moléculaire obtenue par chromatographie sur gel perméable. Les problèmes de calcul des distributions de masse moléculaire à partir de paramètres rhéologiques sont aussi discutés.

[1]  W. Graessley,et al.  Effects of polydispersity on linear viscoelasticity in entangled polymer melts , 1992 .

[2]  J. G. Brodnyan,et al.  The Rheology of Asphalt. III. Dynamic Mechanical Properties of Asphalt , 1960 .

[3]  W. Tuminello Molecular weight and molecular weight distribution from dynamic measurements of polymer melts , 1986 .

[4]  William H. Tuminello,et al.  Determining molecular weight distributions from viscosity versus shear rate flow curves , 1991 .

[5]  Souheng Wu,et al.  Characterization of polymer molecular weight distribution by transient viscoelasticity: polytetrafluoroethylenes , 1988 .

[6]  J. Stastna,et al.  Fractional complex modulus manifested in asphalts , 1994 .

[7]  J. Stastna,et al.  Characterization of regular and modified bitumens via their complex modulus , 1996 .

[8]  T. Yen,et al.  Macrostructures of the asphaltic fractions by various instrumental methods , 1967 .

[9]  Bernard Brûlé,et al.  RELATIONSHIPS BETWEEN COMPOSITION, STRUCTURE, AND PROPERTIES OF ROAD ASPHALTS: STATE OF RESEARCH AT THE FRENCH PUBLIC WORKS CENTRAL LABORATORY , 1986 .

[10]  H. Schuch Application of a blending rule for the complex viscosity of polymer melts , 1988 .

[11]  H. Janeschitz-Kriegl,et al.  The Influence of Molar Mass Distribution on the Complex Moduli of Polymer Melts , 1989 .

[12]  D. Mead Determination of molecular weight distributions of linear flexible polymers from linear viscoelastic material functions , 1994 .

[13]  A. Malkin,et al.  Flow curve–molecular weight distribution: Is the solution of the inverse problem possible?† , 1991 .

[14]  A. Rudin,et al.  Measurement of Mark-Houwink constants by size exclusion chromatography with a low angle laser light scattering detector , 1985 .