Natrotitanite, ideally (Na0.5Y0.5)Ti(SiO4)O, a new mineral from the Verkhnee Espe deposit, Akjailyautas mountains, Eastern Kazakhstan district, Kazakhstan: description and crystal structure

Abstract Natrotitanite, ideally (Na0.5Y0.5)Ti(SiO4)O, is a new mineral from the Verkhnee Espe rare-element deposit at the northern exo-contact of the Akjailyautas granite massif in the northern part of the Tarbagatai mountain range, Eastern Kazakhstan. Both the mineral and the name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA 2010-033). Star-shaped aggregates of small short prisms of yellow or yellowish white (Na,Y,REE)-bearing titanite rimmed by thin (~2 μm) rims of natrotitanite are embedded in yttrium-bearing fluorite and replace narsarsukite. Associated minerals are microcline, albite, quartz, riebeckite, aegirine, biotite, astrophyllite, rutile, zircon and elpidite. Natrotitanite is milky white to yellowish grey, transparent to translucent, and has a white streak and a vitreous lustre. It shows pale orange cathodoluminescence but does not fluoresce under ultraviolet light. It shows no cleavage or parting, and is brittle; the calculated density is 3.833 g cm-3. The indices of refraction, measured with the Bloss spindle stage for the wavelength 590 nm using a gel filter, are α = 1.904, γ = 2.030, and these values are in accord with the mean refractive index, 1.988, calculated from the Gladstone-Dale relation. Natrotitanite is monoclinic, C2/c, a = 6.5691(2), b = 8.6869(3), c = 7.0924(2) Å, P = 114.1269(4)°, V = 369.4(2) Å3, Z= 4, a:b:c = 0.7562:1: 0.8164. The seven strongest lines in the X-ray powder diffraction pattern [in the order d (Å), I, (hkl)] are as follows: 2.597, 10, (130); 3.248, 8, (112̅); 2.994, 6, (200); 1.641, 4, (330); 4.941, 3, (HO); 1.498, 3, (400); 2.273, 3, (113̅). Chemical analysis by electron microprobe gave Nb2O5 1.28, SiO2 27.83, TiO2 35.00, SnO2 0.57, V2O3 0.36, Fe2O3 0.23, Y2O3 7.87, Ce2O3 0.83, Sm2O3 0.26, Gd2O3 0.46, Tb2O3 0.17, Dy2O3 2.45, Ho2O3 0.16, Er2O3 2.24, Tm2O3 0.50, Yb2O3 2.53, Nd2O3 0.35, Lu2O3 0.28, MnO 0.33, CaO 8.16, Na2O 5.55, F 1.52 O ≡ F -0.64, sum 98.71 wt.%. The resulting empirical formula is (Na0.39Ca0.32Y0.15Dy0.03Yb0.03 Er0.03Ce0.01Ho0.01Tm0.01Gd0.01Nd0.01)∑1.00(Ti0.95Nb0.02Sn0.01Fe3+0.01Mn0.01 V0.01)∑1.01Si1.01O4.00(O0.83F0.17), calculated on the basis of 3 cations per formula unit. The general formula is written as (Na,Ca,Y,REE)TiSiO4(O,F), and the endmember formula is (Na0.5Y0.5)Ti(SiO4)O. The crystal structure of a composite optically continuous crystal of natrotitanite and (Na, Y)-bearing titanite was mounted on a Bruker D8 three-circle diffractometer equipped with a rotating anode generator (MoKα radiation), a multi-layer optics incident-beam path and an APEX-II CCD detector. The crystal structure was refined in space group C2/c to a final R1 index of 1.8%. Natrotitanite is isostructural with titanite, (Na + Y + REE) replacing Ca at the Ca site in the titanite structure.

[1]  F. Hawthorne,et al.  Triclinic titanite from the Heftetjern granitic pegmatite, Tørdal, southern Norway , 2009, Mineralogical Magazine.

[2]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[3]  Prrnn C. BunNs,et al.  The crystal structure of sinkankasite , a complex heteropolyhedral sheet mineral , 2007 .

[4]  R. Mitchell,et al.  Tantalum-bearing titanite: synthesis and crystal structure data , 2006 .

[5]  R. Mitchell,et al.  COMPOSITION AND PARAGENESIS OF Na-, Nb- AND Zr-BEARING TITANITE FROM KHIBINA, RUSSIA, AND CRYSTAL-STRUCTURE DATA FOR SYNTHETIC ANALOGUES , 2005 .

[6]  A. Chakhmouradian Crystal chemistry and paragenesis of compositionally unique (Al-, Fe-, Nb-, and Zr-rich) titanite from Afrikanda, Russia , 2004 .

[7]  F. Hawthorne The use of end-member charge-arrangements in defining new mineral species and heterovalent substitutions in complex minerals , 2002 .

[8]  A. Zaitsev,et al.  CALCITE – AMPHIBOLE – CLINOPYROXENE ROCK FROM THE AFRIKANDA COMPLEX, KOLA PENINSULA, RUSSIA: MINERALOGY AND A POSSIBLE LINK TO CARBONATITES. II. OXYSALT MINERALS , 2002 .

[9]  John M. Hughes,et al.  Incorporation of rare earth elements in titanite: Stabilization of the A2/a dimorph by creation of antiphase boundaries , 1997 .

[10]  F. Hawthorne,et al.  Site populations in minerals; terminology and presentation of results of crystal-structure refinement , 1995 .

[11]  M. Novák,et al.  The Al (Nb, Ta) Ti(in−2) substitution in titanite: the emergence of a new species? , 1995 .

[12]  P. Robinson,et al.  Crystal structure, H positions, and the Se lone pair of synthetic chalcomenite, Cu(H 2 O) 2 [SeO 3 ] , 1992 .

[13]  G. Rossi,et al.  The crystal-chemistry of high-aluminium titanites , 1991 .

[14]  G. Rossman,et al.  Alpha-decay damage in titanite , 1991 .

[15]  Mati Raudsepp,et al.  The amblygonite-montebrasite series; characterization by single-crystal structure refinement, infared spectroscopy, and multinuclear MAS-NMR spectroscopy , 1990 .

[16]  G. Brown,et al.  High-temperature structural study of the P2 1 /a A2/a phase transition in synthetic titanite, CaTiSiO 5 , 1976 .

[17]  G. V. Gibbs,et al.  The crystal structure of synthetic titanite, CaTiOSiO 4 , and the domain textures of natural titanites , 1976 .

[18]  B. HrccrNs The crystal chemistry and space groups of natural and synthetic titanites , 1976 .

[19]  F. Stewner Die Kristallstruktur von a-Li3BO3 , 1971 .

[20]  J. Zemann,et al.  Die Kristallstruktur von Teineit. Ein Beispiel für die Korrektur einer chemischen Formel auf Grund der Strukturbestimmung , 1962 .

[21]  W. Zachariasen II. The Crystal Structure of Titanite , 1930 .