Triangle search method for nonlinear electromagnetic field computation

This paper presents a hybrid algorithm used, in conjunction with the Finite Integration Technique (FIT), for solving static and quasistatic electromagnetic field problems in nonlinear media. The hybrid technique is based on new theoretical results regarding the similarities between the Picard‐Banach fixed‐point (polarization) method and the Newton method. At each iteration, the solution is obtained as a linear combination of the old solution, and the new Picard‐Banach and Newton solutions. The numerical solutions are calculated through a “triangle” (bidimensional) minimization of the residual or of the energy functional. The goal of this combination is to increase the robustness of the iterative method, without losing the quadratic speed of convergence in the vicinity of the solution. The proposed method generalizes and unifies in a single algorithm the overrelaxed Picard‐Banach and the underrelaxed Newton methods.

[1]  Stephen J. Wright,et al.  Optimization Software Guide , 1987 .

[2]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[3]  J. O'Dwyer,et al.  Choosing the relaxation parameter for the solution of nonlinear magnetic field problems by the Newton-Raphson method , 1995 .

[4]  Ein numerisches Verfahren zur Berechnung magnetischer Felder, insbesondere in Anordnungen mit Permanentmagneten , 1968 .

[5]  D. Ioan,et al.  Models for capacitive effects in iron core transformers , 2000 .

[6]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[7]  Thomas Weiland,et al.  Numerical analysis of a magnetic recording write head benchmark problem using the finite integration technique , 2002 .

[8]  Z. J. Cendes,et al.  Convergence of iterative methods for nonlinear magnetic field problems , 1988 .

[9]  D. Ioan,et al.  Hybrid and concurrent algorithms for nonlinear magnetic field problems , 2000 .

[10]  Koji Fujiwara,et al.  Method for determining relaxation factor for modified Newton-Raphson method , 1993 .

[11]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[12]  K. Fujiwara,et al.  Acceleration of Convergence Characteristic of Iccg Method , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.

[13]  D. Ioan,et al.  Reducing the complexity order of the algorithms for magnetic field nonlinear problems , 2002 .

[14]  Oszkar Biro,et al.  Various FEM formulations for the calculation of transient 3D eddy currents in nonlinear media , 1995 .

[15]  Guglielmo Rubinacci,et al.  Numerical procedures for the solution of nonlinear electromagnetic problems , 1992 .

[16]  N. Takahashi,et al.  SUMMARY OF RESULTS FOR PROBLEM 20 (3‐D STATIC FORCE PROBLEM) , 1995 .

[17]  Thomas Weiland,et al.  Numerical calculation of nonlinear transient field problems with the Newton-Raphson method , 2000 .

[18]  R. Albanese,et al.  Periodic solutions of nonlinear eddy current problems in three-dimensional geometries , 1992 .

[19]  T. Weiland Time Domain Electromagnetic Field Computation with Finite Difference Methods , 1996 .