A radiative transfer framework for rendering materials with anisotropic structure

The radiative transfer framework that underlies all current rendering of volumes is limited to scattering media whose properties are invariant to rotation. Many systems allow for "anisotropic scattering," in the sense that scattered intensity depends on the scattering angle, but the standard equation assumes that the structure of the medium is isotropic. This limitation impedes physics-based rendering of volume models of cloth, hair, skin, and other important volumetric or translucent materials that do have anisotropic structure. This paper presents an end-to-end formulation of physics-based volume rendering of anisotropic scattering structures, allowing these materials to become full participants in global illumination simulations. We begin with a generalized radiative transfer equation, derived from scattering by oriented non-spherical particles. Within this framework, we propose a new volume scattering model analogous to the well-known family of microfacet surface reflection models; we derive an anisotropic diffusion approximation, including the weak form required for finite element solution and a way to compute the diffusion matrix from the parameters of the scattering model; and we also derive a new anisotropic dipole BSSRDF for anisotropic translucent materials. We demonstrate results from Monte Carlo, finite element, and dipole simulations. All these contributions are readily implemented in existing rendering systems for volumes and translucent materials, and they all reduce to the standard practice in the isotropic case.

[1]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[2]  K. Oughstun,et al.  Optical properties of inhomogeneous materials , 1980, IEEE Journal of Quantum Electronics.

[3]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[4]  James F. Blinn,et al.  Light reflection functions for simulation of clouds and dusty surfaces , 1982, SIGGRAPH.

[5]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[6]  Kenneth E. Torrance,et al.  The zonal method for calculating light intensities in the presence of a participating medium , 1987, SIGGRAPH.

[7]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[8]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[9]  James T. Kajiya,et al.  Rendering fur with three dimensional textures , 1989, SIGGRAPH.

[10]  John Moulton,et al.  Diffusion Modelling of Picosecond Laser Pulse Propagation in Turbid Media , 1990 .

[11]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.

[12]  B. Wilson,et al.  A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. , 1992, Medical physics.

[13]  M. Levoy,et al.  Fast volume rendering using a shear-warp factorization of the viewing transformation , 1994, SIGGRAPH.

[14]  N. Max Efficient light propagation for multiple anisotropic volume scattering , 1995 .

[15]  H. Groemer Geometric Applications of Fourier Series and Spherical Harmonics , 1996 .

[16]  George Papanicolaou,et al.  Transport equations for elastic and other waves in random media , 1996 .

[17]  Yves D. Willems,et al.  Rendering Participating Media with Bidirectional Path Tracing , 1996, Rendering Techniques.

[18]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[19]  Fabrice Neyret,et al.  Modeling, Animating, and Rendering Complex Scenes Using Volumetric Textures , 1998, IEEE Trans. Vis. Comput. Graph..

[20]  Per H. Christensen,et al.  Efficient simulation of light transport in scenes with participating media using photon maps , 1998, SIGGRAPH.

[21]  Ping Li,et al.  Analytical solution for the electric potential due to a point source in an arbitrarily anisotropic half-space , 1998 .

[22]  S. Arridge Optical tomography in medical imaging , 1999 .

[23]  Alexander Keller,et al.  Metropolis Light Transport for Participating Media , 2000, Rendering Techniques.

[24]  Peter Shirley,et al.  A microfacet-based BRDF generator , 2000, SIGGRAPH.

[25]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[26]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[27]  Stephen Lin,et al.  Photorealistic rendering of knitwear using the lumislice , 2001, SIGGRAPH.

[28]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[29]  Simon Arridge,et al.  Anisotropic effects in highly scattering media. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  A. Kienle,et al.  Anisotropy of light propagation in biological tissue. , 2004, Optics letters.

[31]  Shree K. Nayar,et al.  Practical Rendering of Multiple Scattering Effects in Participating Media , 2004, Rendering Techniques.

[32]  G. Weiss,et al.  Estimation of anisotropic optical parameters of tissue in a slab geometry. , 2005, Biophysical journal.

[33]  Craig Donner,et al.  Light diffusion in multi-layered translucent materials , 2005, SIGGRAPH 2005.

[34]  S R Arridge,et al.  Recent advances in diffuse optical imaging , 2005, Physics in medicine and biology.

[35]  S. Marschner,et al.  Measuring and modeling the appearance of finished wood , 2005, SIGGRAPH 2005.

[36]  Francisco J. Serón,et al.  A survey on participating media rendering techniques , 2005, The Visual Computer.

[37]  Shree K. Nayar,et al.  A practical analytic single scattering model for real time rendering , 2005, SIGGRAPH '05.

[38]  Juha Heiskala,et al.  Modeling anisotropic light propagation in a realistic model of the human head. , 2005, Applied optics.

[39]  Andrew A. Lacis,et al.  Multiple Scattering of Light by Particles , 2006 .

[40]  A. Lacis,et al.  Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering , 2006 .

[41]  Steve Marschner,et al.  Microfacet Models for Refraction through Rough Surfaces , 2007, Rendering Techniques.

[42]  Simulating knitted cloth at the yarn level , 2008, SIGGRAPH 2008.

[43]  A. Lagendijk,et al.  Optical anisotropic diffusion: new model systems and theoretical modeling. , 2009, Journal of biomedical optics.

[44]  Sylvain Lefebvre,et al.  GigaVoxels: ray-guided streaming for efficient and detailed voxel rendering , 2009, I3D '09.

[45]  Adam Arbree,et al.  Heterogeneous Subsurface Scattering Using the Finite Element Method , 2011, IEEE Transactions on Visualization and Computer Graphics.