Cellular automata with fuzzy parameters in microscopic study of positive HIV individuals
暂无分享,去创建一个
Fernando A. C. Gomide | Laécio C. Barros | Rodney Carlos Bassanezi | R. M. Jafelice | Rosana Motta Jafelice | B. F. Z. Bechara | F. Gomide | R. Bassanezi | L. C. Barros | B. Bechara
[1] F. A. B. Coutinho,et al. Modelling the natural history of HIV infection in individuals and its epidemiological implications , 2001, Bulletin of mathematical biology.
[2] Hamid Ez-Zahraouy,et al. Dynamics of HIV infection on 2D cellular automata , 2003 .
[3] R. Bassanezi,et al. The SI epidemiological models with a fuzzy transmission parameter , 2003 .
[4] M. Nowak. The Mathematical Biology of Human Infections , 1999 .
[5] E. H. Mamdani,et al. Advances in the linguistic synthesis of fuzzy controllers , 1976 .
[6] R. M. Zorzenon dos Santos,et al. Dynamics of HIV infection: a cellular automata approach. , 2001, Physical review letters.
[7] R. M. Jafelice,et al. Fuzzy modeling in symptomatic HIV virus infected population , 2004, Bulletin of mathematical biology.
[8] Ebrahim H. Mamdani,et al. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..
[9] Peter M. A. Sloot,et al. Cellular Automata Model of Drug Therapy for HIV Infection , 2002, ACRI.
[10] Claude H. Moog,et al. Clinical Tests of Therapeutical Failures Based on Mathematical Modeling of the HIV Infection , 2008, IEEE Transactions on Automatic Control.
[11] Roman M. Zaritski,et al. Feedback-mediated dynamics in two coupled nephrons , 2004, Bulletin of mathematical biology.
[12] Ruben A. Filter,et al. Dynamic HIV/AIDS parameter estimation with application to a vaccine readiness study in Southern Africa , 2005, IEEE Transactions on Biomedical Engineering.
[13] Giovanni Colombo,et al. A non-stochastic approach for modeling uncertainty in population dynamics , 1998 .
[14] D Commenges,et al. Practical Identifiability of HIV Dynamics Models , 2007, Bulletin of mathematical biology.
[15] G B Ermentrout,et al. Cellular automata approaches to biological modeling. , 1993, Journal of theoretical biology.
[16] W. Pedrycz,et al. An introduction to fuzzy sets : analysis and design , 1998 .
[17] Alan S. Perelson,et al. Mathematical Analysis of HIV-1 Dynamics in Vivo , 1999, SIAM Rev..
[18] Fernando Gomide,et al. Methodology To Determine The Evolution Of Asymptomatic Hiv Population Using Fuzzy Set Theory , 2005, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[19] Ras B. Pandey,et al. A computer simulation study of cell population in a fuzzy interaction model for mutating HIV , 1998 .
[20] N. Rashevsky,et al. Mathematical biology , 1961, Connecticut medicine.
[21] M A Caetano,et al. A comparative evaluation of open loop and closed loop drug administration strategies in the treatment of AIDS. , 1999, Anais da Academia Brasileira de Ciencias.
[22] Feng Lin,et al. A Self-Learning Fuzzy Discrete Event System for HIV/AIDS Treatment Regimen Selection , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
[23] M. Nowak,et al. Population Dynamics of Immune Responses to Persistent Viruses , 1996, Science.
[24] Eduardo Massad,et al. Fuzzy gradual rules in epidemiology , 2003 .