Regional correlation among ganglion cell complex, nerve fiber layer, and visual field loss in glaucoma.

PURPOSE To analyze the relationship among macular ganglion cell complex (GCC) thickness, peripapillary nerve fiber layer (NFL) thickness, and visual field (VF) defects in patients with glaucoma. METHODS A Fourier-domain optical coherence tomography (FD-OCT) system was used to map the macula and peripapillary regions of the retina in 56 eyes of 38 patients with perimetric glaucoma. The macular GCC and peripapillary NFL thicknesses were mapped and standard automated perimetry (SAP) was performed. Loss of GCC and NFL were correlated with the VF map on both a point-by-point and regional basis. RESULTS Correlation between GCC thickness and peripapillary NFL thickness produced a detailed correspondence map that demonstrates the arcuate course of the NFL in the macula. Corresponding regions within the GCC, NFL, and VF maps demonstrate significant correlation, once parafoveal retinal ganglion cell (RGC) displacement is taken into account. CONCLUSIONS There are significant point-specific and regional correlations between GCC loss, NFL loss, and deficits on SAP. Using these different data sources together may improve our understanding of glaucomatous damage and aid in the management of patients with glaucoma.

[1]  Jeffrey M. Liebmann,et al.  Progression pattern of initial parafoveal scotomas in glaucoma. , 2013, Ophthalmology.

[2]  Haogang Zhu,et al.  Predicting visual function from the measurements of retinal nerve fiber layer structure. , 2010, Investigative ophthalmology & visual science.

[3]  Jean-Claude Mwanza,et al.  Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. , 2012, Ophthalmology.

[4]  Na Rae Kim,et al.  Comparison of Macular Ganglion Cell Complex Thickness by Fourier-Domain OCT in Normal Tension Glaucoma and Primary Open-Angle Glaucoma , 2013, Journal of glaucoma.

[5]  A. Sommer,et al.  Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. , 1991, Archives of ophthalmology.

[6]  Donald C. Hood,et al.  A framework for comparing structural and functional measures of glaucomatous damage , 2007, Progress in Retinal and Eye Research.

[7]  A. S. Vilupuru,et al.  The relationship between nerve fiber layer and perimetry measurements. , 2007, Investigative ophthalmology & visual science.

[8]  N. Drasdo,et al.  The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field , 2007, Vision Research.

[9]  Wing-Ho Yung,et al.  Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. , 2005, Ophthalmology.

[10]  M. Sung,et al.  Clinical Validity of Macular Ganglion Cell Complex by Spectral Domain-Optical Coherence Tomography in Advanced Glaucoma , 2014, Journal of glaucoma.

[11]  G. Wollstein,et al.  Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. , 2004, Investigative ophthalmology & visual science.

[12]  Chris A Johnson,et al.  Evaluation of the structure-function relationship in glaucoma. , 2005, Investigative ophthalmology & visual science.

[13]  Donald C. Hood,et al.  Glaucomatous damage of the macula , 2013, Progress in Retinal and Eye Research.

[14]  Robert Ritch,et al.  Initial arcuate defects within the central 10 degrees in glaucoma. , 2011, Investigative ophthalmology & visual science.

[15]  F. Grignolo,et al.  Ganglion cell complex and retinal nerve fiber layer measured by fourier-domain optical coherence tomography for early detection of structural damage in patients with preperimetric glaucoma , 2011, Clinical ophthalmology.

[16]  Milan Sonka,et al.  Distribution of damage to the entire retinal ganglion cell pathway: quantified using spectral-domain optical coherence tomography analysis in patients with glaucoma. , 2012, Archives of ophthalmology.

[17]  Parul Sony,et al.  Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. , 2006, Investigative ophthalmology & visual science.

[18]  F. Medeiros,et al.  A combined index of structure and function for staging glaucomatous damage. , 2012, Archives of ophthalmology.

[19]  D. Hood,et al.  Deriving visual field loss based upon OCT of inner retinal thicknesses of the macula , 2011, Biomedical optics express.

[20]  W. Argus,et al.  Fluctuations on the Humphrey and Octopus perimeters. , 1987, Investigative ophthalmology & visual science.

[21]  K. A. Townsend,et al.  Imaging of the retinal nerve fibre layer for glaucoma , 2008, British Journal of Ophthalmology.

[22]  G. Lindgren,et al.  Normal variability of static perimetric threshold values across the central visual field. , 1987, Archives of ophthalmology.

[23]  Robert N Weinreb,et al.  Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. , 2010, Ophthalmology.

[24]  Cedric Ka-Fai Yiu,et al.  Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, II: structure/function regression analysis in glaucoma. , 2005, Investigative ophthalmology & visual science.

[25]  Joel S Schuman,et al.  Optic nerve head and retinal nerve fiber layer analysis: a report by the American Academy of Ophthalmology. , 2007, Ophthalmology.

[26]  David Huang,et al.  Patterns of ganglion cell complex and nerve fiber layer loss in nonarteritic ischemic optic neuropathy by Fourier-domain optical coherence tomography. , 2012, Investigative ophthalmology & visual science.

[27]  H. Rao,et al.  Retinal nerve fiber layer and macular inner retina measurements by spectral domain optical coherence tomograph in Indian eyes with early glaucoma , 2012, Eye.

[28]  D. Garway-Heath,et al.  Mapping the visual field to the optic disc in normal tension glaucoma eyes. , 2000, Ophthalmology.

[29]  A. Kao,et al.  Diagnostic Power of Optic Disc Morphology, Peripapillary Retinal Nerve Fiber Layer Thickness, and Macular Inner Retinal Layer Thickness in Glaucoma Diagnosis With Fourier-domain Optical Coherence Tomography , 2011, Journal of glaucoma.

[30]  Structure-function relationship of the macular visual field sensitivity and the ganglion cell complex thickness in glaucoma. , 2012, Investigative ophthalmology & visual science.

[31]  P. Khaw,et al.  The severity and spatial distribution of visual field defects in primary glaucoma: a comparison of primary open-angle glaucoma and primary angle-closure glaucoma. , 2002, Archives of ophthalmology.

[32]  L. Zangwill,et al.  Role of imaging in glaucoma diagnosis and follow-up , 2011, Indian journal of ophthalmology.

[33]  Xian Zhang,et al.  Measurement of local retinal ganglion cell layer thickness in patients with glaucoma using frequency-domain optical coherence tomography. , 2009, Archives of ophthalmology.

[34]  G. Wollstein,et al.  Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. , 2009, Ophthalmology.

[35]  Chris A. Johnson,et al.  The Nature of Macular Damage in Glaucoma as Revealed by Averaging Optical Coherence Tomography Data. , 2012, Translational vision science & technology.

[36]  Robert N Weinreb,et al.  Structure-function Relationships Using the Cirrus Spectral Domain Optical Coherence Tomograph and Standard Automated Perimetry , 2012, Journal of glaucoma.

[37]  Sung Yong Kang,et al.  Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectral-domain optical coherence tomography. , 2010, Investigative ophthalmology & visual science.

[38]  Donald C. Hood,et al.  Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma. , 2011, Biomedical optics express.

[39]  Eun Suk Lee,et al.  Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. , 2010, Investigative ophthalmology & visual science.

[40]  Sung Yong Kang,et al.  Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. , 2010, Investigative ophthalmology & visual science.

[41]  Milan Sonka,et al.  2-D pattern of nerve fiber bundles in glaucoma emerging from spectral-domain optical coherence tomography. , 2012, Investigative ophthalmology & visual science.

[42]  Donald C Hood,et al.  Retinal nerve fiber structure versus visual field function in patients with ischemic optic neuropathy. A test of a linear model. , 2008, Ophthalmology.