Nonreciprocal transmission in a nonlinear photonic‐crystal Fano structure with broken symmetry

Nanostructures that feature nonreciprocal light transmission are highly desirable building blocks for realizing photonic integrated circuits. Here, a simple and ultracompact photonic-crystal structure, where a waveguide is coupled to a single nanocavity, is proposed and experimentally demonstrated, showing very efficient optical diode functionality. The key novelty of the structure is the use of cavity-enhanced material nonlinearities in combination with spatial symmetry breaking and a Fano resonance to realize nonreciprocal propagation effects at ultralow power and with good wavelength tunability. The nonlinearity of the device relies on ultrafast carrier dynamics, rather than the thermal effects usually considered, allowing the demonstration of nonreciprocal operation at a bit-rate of 10 Gbit s−1 with a low energy consumption of 4.5 fJ bit−1.

[1]  J. Joannopoulos,et al.  Temporal coupled-mode theory for the Fano resonance in optical resonators. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  Yi Xuan,et al.  An All-Silicon Passive Optical Diode , 2012, Science.

[3]  Zongfu Yu,et al.  Photonic Aharonov-Bohm effect based on dynamic modulation. , 2012, Physical review letters.

[4]  Shanhui Fan,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[5]  Sylvain Combrié,et al.  Ultrafast all-optical modulation in GaAs photonic crystal cavities , 2009 .

[6]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[7]  Weiqiang Ding,et al.  Ultrahigh-contrast-ratio silicon Fano diode , 2012 .

[8]  Zongfu Yu,et al.  What is — and what is not — an optical isolator , 2013, Nature Photonics.

[9]  Jian Wang,et al.  Silicon optical diode with 40 dB nonreciprocal transmission. , 2013, Optics letters.

[10]  Jing Xu,et al.  Wavelength Conversion of a 9.35-Gb/s RZ OOK Signal in an InP Photonic Crystal Nanocavity , 2014, IEEE Photonics Technology Letters.

[11]  Xiaofeng Hu,et al.  Push–Pull Optical Nonreciprocal Transmission in Cascaded Silicon Microring Resonators , 2013, IEEE Photonics Journal.

[12]  A. Miroshnichenko,et al.  Reconfigurable nonreciprocity with a nonlinear Fano diode , 2013, 1311.2533.

[13]  Sylvain Combrié,et al.  Photonic crystal membrane waveguides with low insertion losses , 2009 .

[14]  Jesper Mørk,et al.  Improved switching using Fano resonances in photonic crystal structures. , 2013, Optics letters.

[15]  Jesper Mørk,et al.  Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity , 2013 .

[16]  M. Lipson,et al.  Subject Areas : Optics A Viewpoint on : Electrically Driven Nonreciprocity Induced by Interband Photonic Transition on a Silicon Chip , 2012 .

[17]  Rajeev J. Ram,et al.  Faraday rotation in an InP waveguide , 2007 .

[18]  Horst Dötsch,et al.  Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides. , 2004, Optics letters.

[19]  Michal Lipson,et al.  Optical nonreciprocity in optomechanical structures. , 2009, Physical review letters.

[20]  J. Mørk,et al.  Photonic crystal Fano laser: terahertz modulation and ultrashort pulse generation. , 2014, Physical review letters.

[21]  Zongfu Yu,et al.  Fundamental bounds on decay rates in asymmetric single-mode optical resonators. , 2013, Optics letters.

[22]  Jesper Mørk,et al.  Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches. , 2011, Optics express.

[23]  Dong Hun Kim,et al.  On-chip optical isolation in monolithically integrated non-reciprocal optical resonators , 2011 .

[24]  Leif Katsuo Oxenløwe,et al.  Switching characteristics of an InP photonic crystal nanocavity: experiment and theory. , 2013, Optics express.

[25]  Susumu Noda,et al.  Trapping and emission of photons by a single defect in a photonic bandgap structure , 2000, Nature.

[26]  J. Mørk,et al.  Experimental demonstration of a four-port photonic crystal cross-waveguide structure , 2012 .

[27]  J. Mørk,et al.  Nonlinear switching dynamics in a photonic-crystal nanocavity , 2014, 1405.2317.

[28]  A. Butsch,et al.  Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre , 2011 .

[29]  M. Notomi,et al.  Sub-femtojoule all-optical switching using a photonic-crystal nanocavity , 2010 .

[30]  Martin M. Fejer,et al.  All-optical diode in a periodically poled lithium niobate waveguide , 2001 .

[31]  Liam O'Faolain,et al.  Optically induced indirect photonic transitions in a slow light photonic crystal waveguide. , 2014, Physical review letters.

[32]  Zongfu Yu,et al.  Complete optical isolation created by indirect interband photonic transitions , 2009 .

[33]  A. Rao,et al.  Optical diode action from axially asymmetric nonlinearity in an all-carbon solid-state device. , 2013, Nano letters.

[34]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[35]  Rémy Braive,et al.  Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells , 2014 .

[36]  Jeff F. Young,et al.  Optical bistability involving photonic crystal microcavities and Fano line shapes. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Hao Hu,et al.  Fano resonance control in a photonic crystal structure and its application to ultrafast switching , 2014 .

[38]  Masaya Notomi,et al.  High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities , 2003 .

[39]  M K Moravvej-Farshi,et al.  Optical isolation via 𝒫 𝒯 -symmetric nonlinear Fano resonances. , 2014, Optics express.

[40]  Zheng Wang,et al.  Observation of unidirectional backscattering-immune topological electromagnetic states , 2009, Nature.