Anomalously large spin-dependent electron correlation in the nearly half-metallic ferromagnet CoS2

The spin-dependent band structure of CoS 2 , which is a candidate for a half-metallic ferromagnet, was investigated by both spin- and angle-resolved photoemission spectroscopy and theoretical calculations to reappraise the half-metallicity and electronic correlations. We determined the three-dimensional Fermi surface and the spin-dependent band structure. As a result, we found that a part of the minority spin bands is on the occupied side in the vicinity of the Fermi level, providing spectroscopic evidence that CoS 2 is not a half-metal but very close. Band calculations using density functional theory with generalized gradient approximation showed good agreement with the observed majority spin e g bands, while it could not explain the observed band width of the minority-spin e g bands. On the other hand, theoretical calculations using dynamical mean field theory could better reproduce the strong mass renormalization in the minority-spin e g bands. Our results strongly suggest the presence of anomalously enhanced spin-dependent electron correlation effects on the electronic structure in the vicinity of the half-metallic state. We also report the temperature dependence of the electronic structure across the Curie temperature and discuss the mechanism of the thermal demagnetization. Our discovery of the anomalously large spin-dependent electronic correlations not only demonstrates a key factor in understanding the electronic structure of half-metals but also provides a motivation to improve theoretical calculations on spin-polarized strongly correlated systems.

[1]  M. Kawamura,et al.  DCore: Integrated DMFT software for correlated electrons , 2020, SciPost Physics.

[2]  Timur K. Kim,et al.  Weyl fermions, Fermi arcs, and minority-spin carriers in ferromagnetic CoS2. , 2020, Science advances.

[3]  Shik Shin,et al.  Origins of Thermal Spin Depolarization in Half-Metallic Ferromagnet CrO_{2}. , 2018, Physical review letters.

[4]  K. Terashima,et al.  Observation of intrinsic half-metallic behavior of CrO2 (100) epitaxial films by bulk-sensitive spin-resolved PES , 2017, 1711.01781.

[5]  X. Chen,et al.  Updated core libraries of the ALPS project , 2016, Comput. Phys. Commun..

[6]  G. Profeta,et al.  Weakly-correlated nature of ferromagnetism in non symmorphic CrO$_2$ revealed by bulk-sensitive soft X ray ARPES , 2016, 1607.01703.

[7]  H. Takeya,et al.  Observation of a Hidden Hole-Like Band Approaching the Fermi Level in K-Doped Iron Selenide Superconductor , 2016, 1606.02405.

[8]  H. Harima,et al.  Large Cyclotron Mass and Large Ordered Moment in Ferromagnet CoS₂ Compared with Paramagnet CoSe₂ , 2016 .

[9]  Shik Shin,et al.  High-resolution three-dimensional spin- and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light. , 2016, The Review of scientific instruments.

[10]  Xiaoyu Deng,et al.  TRIQS/DFTTools: A TRIQS application for ab initio calculations of correlated materials , 2015, Comput. Phys. Commun..

[11]  Z. Hussain,et al.  Observation of universal strong orbital-dependent correlation effects in iron chalcogenides , 2015, Nature Communications.

[12]  Y. Ando Spintronics technology and device development , 2015 .

[13]  K. Terashima,et al.  Intrinsic spin polarized electronic structure of CrO2 epitaxial film revealed by bulk-sensitive spin-resolved photoemission spectroscopy , 2015, 1505.04492.

[14]  Hartmut Hafermann,et al.  TRIQS: A toolbox for research on interacting quantum systems , 2015, Comput. Phys. Commun..

[15]  A. Gloskovskii,et al.  Direct observation of half-metallicity in the Heusler compound Co2MnSi , 2014, Nature Communications.

[16]  Hartmut Hafermann,et al.  Efficient implementation of the continuous-time hybridization expansion quantum impurity solver , 2013, Comput. Phys. Commun..

[17]  V. Anisimov,et al.  Magnetism of iron and nickel from rotationally invariant Hirsch-Fye quantum Monte Carlo calculations , 2012, 1210.0911.

[18]  J.,et al.  Orbital characters of bands in the iron-based superconductor BaFe_{1.85}Co_{0.15}As_{2} , 2013 .

[19]  H. Ebert,et al.  Effects of spin-dependent quasiparticle renormalization in fe, co, and ni photoemission spectra: An experimental and theoretical study , 2012 .

[20]  M. Troyer,et al.  Continuous-time Monte Carlo methods for quantum impurity models , 2010, 1012.4474.

[21]  H. Dürr,et al.  Strength of correlation effects in the electronic structure of iron. , 2009, Physical review letters.

[22]  P. Dowben,et al.  The minority spin surface bands of CoS(2)(001). , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  K. Koepernik,et al.  Tight-binding models for the iron-based superconductors , 2009, 0905.4844.

[24]  A. Yaresko,et al.  Electronic structure, optical spectra, and x-ray magnetic circular dichroism in CoS 2 , 2008 .

[25]  M. Katsnelson,et al.  Nonquasiparticle states in Co2MnSi evidenced through magnetic tunnel junction spectroscopy measurements. , 2007, Physical review letters.

[26]  A. I. Lichtenstein,et al.  Half-metallic ferromagnets: From band structure to many-body effects , 2007, 0711.0872.

[27]  Takashi Takahashi,et al.  Xenon-plasma-light low-energy ultrahigh-resolution photoemission study of Co ( S 1 − x Se x ) 2 ( x = 0.075 ) , 2007 .

[28]  M. Katsnelson,et al.  Non-quasiparticle effects in half-metallic ferromagnets , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  P. Dowben,et al.  The electronic band structure of CoS2 , 2007 .

[30]  E. Arrigoni,et al.  Half-metallic ferromagnetism and spin polarization in CrO2 , 2006, cond-mat/0609060.

[31]  C. Chien,et al.  Composition controlled spin polarization in Co1−xFexS2 alloys , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  S. Louie,et al.  Half-metallic graphene nanoribbons , 2006, Nature.

[33]  M. Katsnelson,et al.  Electron correlations and the minority-spin band gap in half-metallic Heusler alloys. , 2006, Physical review letters.

[34]  Matthias Troyer,et al.  Continuous-time solver for quantum impurity models. , 2005, Physical review letters.

[35]  H. Namatame,et al.  Energy band and spin-dependent many-body interactions in ferromagnetic Ni(110) : A high-resolution angle-resolved photoemission study , 2005 .

[36]  K. Ziebeck,et al.  Magnetization distribution in CoS2; is it a half metallic ferromagnet? , 2005 .

[37]  M. Scheffler,et al.  Preserving the half-metallicity at the Heusler alloy Co2MnSi(001) surface: a density functional theory study. , 2005, Physical review letters.

[38]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[39]  Tingyong Chen,et al.  Spin-dependent band structure effects and measurement of the spin polarization in the candidate half-metal CoS2 , 2004 .

[40]  M. Venkatesan,et al.  Half‐Metallic Ferromagnetism. Example of CrO2. , 2002 .

[41]  W. Auwärter,et al.  Spin-polarized Fermi surface mapping , 2002 .

[42]  J. M. D. Coey,et al.  Half-metallic ferromagnetism: Example of CrO2 (invited) , 2002 .

[43]  A. Warshel Monte Carlo Calculations , 2002 .

[44]  Stuart A. Wolf,et al.  Spintronics: A Spin-Based Electronics Vision for the Future , 2001, Science.

[45]  A. Freeman,et al.  Effect of GGA on the half-metallicity of the itinerant ferromagnet CoS 2 , 2001 .

[46]  C. Chien,et al.  Determination of the spin polarization of half-metallic CrO(2) by point contact Andreev reflection. , 2001, Physical review letters.

[47]  Y. Endoh,et al.  Para- to ferromagnetic phase transition ofCoS2studied by high-resolution photoemission spectroscopy , 2001 .

[48]  I. Mazin Robust half metalicity in FexCo1−xS2 , 2000 .

[49]  B. Min,et al.  Itinerant ferromagnetism in half-metallic CoS 2 , 2000, cond-mat/0001028.

[50]  Jonathan Z. Sun,et al.  Spin-polarized transport and magnetoresistance in magnetic oxides , 1999 .

[51]  Y. Moritomo,et al.  Reconstruction of the electronic structure in half-metallic CoS 2 , 1999 .

[52]  Helmut Eschrig,et al.  FULL-POTENTIAL NONORTHOGONAL LOCAL-ORBITAL MINIMUM-BASIS BAND-STRUCTURE SCHEME , 1999 .

[53]  J. Moodera,et al.  Measuring the spin polarization of a metal with a superconducting point contact , 1998, Science.

[54]  Hwang,et al.  Enhanced intergrain tunneling magnetoresistance in half-metallic CrO2 films , 1997, Science.

[55]  Peter D Johnson Spin-polarized photoemission , 1997 .

[56]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[57]  Y. Endoh,et al.  Ferromagnetic Transition of Heisenberg Ferromagnetic Metal of CoS2 –Static Critical Properties– , 1994 .

[58]  Srivastava,et al.  Electronic structure , 2001, Physics Subject Headings (PhySH).

[59]  Zhao,et al.  Electronic structures of iron and cobalt pyrites. , 1993, Physical review. B, Condensed matter.

[60]  G. Güntherodt,et al.  Spin-resolved photoemission study of in situ grown epitaxial Fe layers on W(110) , 1986 .

[61]  K. Schwarz,et al.  CrO2 predicted as a half-metallic ferromagnet , 1986 .

[62]  Schroeder,et al.  Spin-polarized angle-resolved photoemission study of the electronic structure of Fe(100) as a function of temperature. , 1985, Physical review. B, Condensed matter.

[63]  K.H.J. Buschow,et al.  New Class of Materials: Half-Metallic Ferromagnets , 1983 .

[64]  H. J. Vidberg,et al.  Solving the Eliashberg equations by means ofN-point Padé approximants , 1977 .

[65]  R. J. Bouchard,et al.  Evidence for Itinerant d -Electron Ferromagnetism , 1968 .