Systems Level Modeling of Gene Regulatory Networks

[1]  Patrik D'haeseleer,et al.  Genetic network inference: from co-expression clustering to reverse engineering , 2000, Bioinform..

[2]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[3]  S. Hanash,et al.  Disease proteomics , 2003, Nature.

[4]  Christoph Plass,et al.  Cancer epigenomics. , 2002, Human molecular genetics.

[5]  Nir Friedman,et al.  Data Analysis with Bayesian Networks: A Bootstrap Approach , 1999, UAI.

[6]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[7]  S. P. Fodor,et al.  Multiplexed biochemical assays with biological chips , 1993, Nature.

[8]  E. Davidson,et al.  Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control. , 2001, Development.

[9]  D. Slonim From patterns to pathways: gene expression data analysis comes of age , 2002, Nature Genetics.

[10]  M. Stetter,et al.  Hunting drug targets by systems-level modeling of gene expression profiles , 2004, IEEE Transactions on NanoBioscience.

[11]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[12]  Mathäus Dejori,et al.  Identifying Interventional and Pathogenic Mechanisms by Generative Inverse Modeling of Gene Expression Profiles , 2004, J. Comput. Biol..

[13]  Gustavo Deco,et al.  Computational neuroscience of vision , 2002 .

[14]  A. Cornish-Bowden Fundamentals of Enzyme Kinetics , 1979 .

[15]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[16]  Reimar Hofmann Lernen der Struktur nichtlinearer Abhängigkeiten mit graphischen Modellen , 2000 .

[17]  M Kato,et al.  Inferring genetic networks from DNA microarray data by multiple regression analysis. , 2000, Genome informatics. Workshop on Genome Informatics.

[18]  Mathäus Dejori,et al.  Bayesian Inference of Genetic Networks from Gene-Expression-Data: Convergence and Reliability , 2003, IC-AI.

[19]  R. Somogyi,et al.  The gene expression matrix: towards the extraction of genetic network architectures , 1997 .

[20]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[21]  R. Brent,et al.  Modelling cellular behaviour , 2001, Nature.

[22]  Pierre Baldi,et al.  Bioinformatics - the machine learning approach (2. ed.) , 2000 .

[23]  B L Strehler,et al.  Deletional mutations are the basic cause of aging: historical perspectives. , 1995, Mutation research.

[24]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[25]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[26]  H. Iba,et al.  Inferring a system of differential equations for a gene regulatory network by using genetic programming , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[27]  Michaela Scherr,et al.  Gene silencing mediated by small interfering RNAs in mammalian cells. , 2003, Current medicinal chemistry.

[28]  Gustavo Deco,et al.  Large-Scale Computational Modeling of Genetic Regulatory Networks , 2003, Artificial Intelligence Review.

[29]  Werner Dubitzky,et al.  A Practical Approach to Microarray Data Analysis , 2003, Springer US.

[30]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[31]  Zlatko Trajanoski,et al.  Analyzing Gene-Expression Data with Bayesian Networks , 2002 .

[32]  D. Botstein,et al.  Exploring the new world of the genome with DNA microarrays , 1999, Nature Genetics.

[33]  Jan Vijg,et al.  Large genome rearrangements as a primary cause of aging , 2002, Mechanisms of Ageing and Development.

[34]  Harald Steck,et al.  Constraint-based structural learning in Bayesian networks using finite data sets , 2001 .

[35]  Adilson E Motter,et al.  Range-based attack on links in scale-free networks: are long-range links responsible for the small-world phenomenon? , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[37]  John R. Koza,et al.  Reverse Engineering of Metabolic Pathways from Observed Data Using Genetic Programming , 2000, Pacific Symposium on Biocomputing.

[38]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[39]  Hidde de Jong,et al.  Qualitative Simulation of Genetic Regulatory Networks: Method and Application , 2001, IJCAI.

[40]  S. Fields,et al.  Protein analysis on a proteomic scale , 2003, Nature.

[41]  G. W. Hatfield,et al.  DNA microarrays and gene expression , 2002 .

[42]  Martin Stetter,et al.  Exploration of Cortical Function , 2002, Springer Netherlands.

[43]  J. Downing,et al.  Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. , 2002, Cancer cell.

[44]  Ting Chen,et al.  Modeling Gene Expression with Differential Equations , 1998, Pacific Symposium on Biocomputing.

[45]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[46]  E. Davidson,et al.  Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. , 1998, Science.

[47]  D S Latchman,et al.  Eukaryotic transcription factors. , 1990, The Biochemical journal.

[48]  Satoru Miyano,et al.  Combining Microarrays and Biological Knowledge for Estimating Gene Networks via Bayesian Networks , 2004, J. Bioinform. Comput. Biol..

[49]  Satoru Miyano,et al.  Estimation of Genetic Networks and Functional Structures Between Genes by Using Bayesian Networks and Nonparametric Regression , 2001, Pacific Symposium on Biocomputing.

[50]  Werner Dubitzky,et al.  Multiclass Cancer Classification Using Gene Expression Profiling and Probabilistic Neural Networks , 2002, Pacific Symposium on Biocomputing.

[51]  S. Kauffman Gene regulation networks: a theory for their global structure and behaviors. , 1971, Current topics in developmental biology.

[52]  P. D’haeseleer,et al.  Mining the gene expression matrix: inferring gene relationships from large scale gene expression data , 1998 .

[53]  V. Bohr,et al.  DNA damage and its processing. Relation to human disease , 2002, Journal of Inherited Metabolic Disease.

[54]  Richard E. Korf,et al.  Learning bayesian networks from data , 1996 .

[55]  K D Robertson,et al.  DNA methylation: past, present and future directions. , 2000, Carcinogenesis.

[56]  S. Kauffman Homeostasis and Differentiation in Random Genetic Control Networks , 1969, Nature.

[57]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[58]  Dennis Shasha,et al.  Pattern Discovery in Biomolecular Data: Tools, Techniques, and Applications , 1999 .

[59]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[60]  Mark Schena,et al.  Microarray Biochip Technology , 2000 .

[61]  H. Lodish Molecular Cell Biology , 1986 .

[62]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[63]  Anton Schwaighofer,et al.  Mining functional modules in genetic networks with decomposable graphical models. , 2004, Omics : a journal of integrative biology.

[64]  J. Yates Mass spectrometry and the age of the proteome. , 1998, Journal of mass spectrometry : JMS.

[65]  Fabian Model,et al.  Feature selection for DNA methylation based cancer classification , 2001, ISMB.