Adaptive regulation of testis gene expression and control of male fertility by the Drosophila hairpin RNA pathway. [Corrected].

[1]  A. Siepel,et al.  Adaptive evolution of testis-specific, recently evolved, clustered miRNAs in Drosophila , 2014, RNA.

[2]  A. Siepel,et al.  Diversity of miRNAs, siRNAs, and piRNAs across 25 Drosophila cell lines , 2014, Genome research.

[3]  Phillip D Zamore,et al.  Cnidarian microRNAs frequently regulate targets by cleavage , 2014, Genome research.

[4]  Li Zhao,et al.  Origin and Spread of de Novo Genes in Drosophila melanogaster Populations , 2014, Science.

[5]  James B. Brown,et al.  Diversity and dynamics of the Drosophila transcriptome , 2014, Nature.

[6]  M. Long,et al.  New genes as drivers of phenotypic evolution , 2013, Nature Reviews Genetics.

[7]  E. Lai,et al.  Homeostatic control of Argonaute stability by microRNA availability , 2013, Nature Structural &Molecular Biology.

[8]  S. Pfeffer,et al.  Broad RNA Interference–Mediated Antiviral Immunity and Virus-Specific Inducible Responses in Drosophila , 2013, The Journal of Immunology.

[9]  E. Lai,et al.  RNase III-independent microRNA biogenesis in mammalian cells. , 2012, RNA.

[10]  Jay Shendure,et al.  Poxviruses Deploy Genomic Accordions to Adapt Rapidly against Host Antiviral Defenses , 2012, Cell.

[11]  Lacramioara Fabian,et al.  Drosophila spermiogenesis , 2012, Spermatogenesis.

[12]  H. White-Cooper,et al.  Tissue, cell type and stage-specific ectopic gene expression and RNAi induction in the Drosophila testis , 2012, Spermatogenesis.

[13]  Manolis Kellis,et al.  New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. , 2011, Genome research.

[14]  E. Lai,et al.  Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. , 2011, Molecular cell.

[15]  F. Hospital,et al.  Rapid rise and fall of selfish sex-ratio X chromosomes in Drosophila simulans: spatiotemporal analysis of phenotypic and molecular data. , 2011, Molecular biology and evolution.

[16]  E. Lai,et al.  Vive la différence: biogenesis and evolution of microRNAs in plants and animals , 2011, Genome Biology.

[17]  Ammar S Naqvi,et al.  Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. , 2011, Genome research.

[18]  Eric C. Lai,et al.  Natural Variation of the Amino-Terminal Glutamine-Rich Domain in Drosophila Argonaute2 Is Not Associated with Developmental Defects , 2010, PloS one.

[19]  Narmada Thanki,et al.  CDD: a Conserved Domain Database for the functional annotation of proteins , 2010, Nucleic Acids Res..

[20]  C. Mello,et al.  Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. , 2010, Molecular cell.

[21]  D. Moazed,et al.  Dicer-Independent Primal RNAs Trigger RNAi and Heterochromatin Formation , 2010, Cell.

[22]  Kuniaki Saito,et al.  Endo‐siRNAs depend on a new isoform of loquacious and target artificially introduced, high‐copy sequences , 2009, The EMBO journal.

[23]  N. Perrimon,et al.  Processing of Drosophila endo-siRNAs depends on a specific Loquacious isoform. , 2009, RNA.

[24]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[25]  E. Lai,et al.  The long and short of inverted repeat genes in animals: MicroRNAs, mirtrons and hairpin RNAs , 2008, Cell cycle.

[26]  Eric C. Lai,et al.  Endogenous small interfering RNAs in animals , 2008, Nature Reviews Molecular Cell Biology.

[27]  N. Perrimon,et al.  An endogenous small interfering RNA pathway in Drosophila , 2008, Nature.

[28]  D. Bartel,et al.  The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs , 2008, Nature.

[29]  Taishin Kin,et al.  Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells , 2008, Nature.

[30]  E. Lai,et al.  Endogenous RNA Interference Provides a Somatic Defense against Drosophila Transposons , 2008, Current Biology.

[31]  M. Long,et al.  The evolution of courtship behaviors through the origination of a new gene in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[32]  Z. Weng,et al.  Endogenous siRNAs Derived from Transposons and mRNAs in Drosophila Somatic Cells , 2008, Science.

[33]  Hong Duan,et al.  The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution , 2008, Nature Structural &Molecular Biology.

[34]  Manolis Kellis,et al.  Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. , 2007, Genome research.

[35]  D. Hartl,et al.  A sex-ratio meiotic drive system in Drosophila simulans. II: an X-linked distorter. , 2007, PLoS biology.

[36]  D. Hartl,et al.  A sex-ratio Meiotic Drive System in Drosophila simulans. I: An Autosomal Suppressor , 2007, PLoS biology.

[37]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[38]  Peng Wang,et al.  The Drosophila RNA Methyltransferase, DmHen1, Modifies Germline piRNAs and Single-Stranded siRNAs in RISC , 2007, Current Biology.

[39]  B. Dickson,et al.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila , 2007, Nature.

[40]  J. Dow,et al.  Using FlyAtlas to identify better Drosophila melanogaster models of human disease , 2007, Nature Genetics.

[41]  Jason S. Cumbie,et al.  High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes , 2007, PloS one.

[42]  N. Rajewsky,et al.  The evolution of gene regulation by transcription factors and microRNAs , 2007, Nature Reviews Genetics.

[43]  D. Bartel,et al.  A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. , 2006, Genes & development.

[44]  Kuniaki Saito,et al.  Processing of Pre-microRNAs by the Dicer-1–Loquacious Complex in Drosophila Cells , 2005, PLoS biology.

[45]  A. Denli,et al.  Normal microRNA Maturation and Germ-Line Stem Cell Maintenance Requires Loquacious, a Double-Stranded RNA-Binding Domain Protein , 2005, PLoS biology.

[46]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[47]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[48]  Gi-Ho Sung,et al.  Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana , 2004, Nature Genetics.

[49]  Michael Zuker,et al.  MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression , 2004, Nature Genetics.

[50]  D. Bartel,et al.  Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs , 2004, Nature Reviews Genetics.

[51]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[52]  E. Sontheimer,et al.  Distinct Roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA Silencing Pathways , 2004, Cell.

[53]  John L. Bowman,et al.  Gene regulation: Ancient microRNA target sequences in plants , 2004, Nature.

[54]  Martina Paulsen,et al.  Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene , 2003, Nature Genetics.

[55]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[56]  E. Nevo,et al.  Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[57]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[58]  C. Bazinet,et al.  Genetic dissection of sperm individualization in Drosophila melanogaster. , 1998, Development.

[59]  E. Lai,et al.  Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster , 2008, Nature Structural &Molecular Biology.

[60]  Robert C. Scott,et al.  Adaptive , 2008, Encyclopedia of GIS.

[61]  岡村 勝友 Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways , 2004 .