Logic in the twenties: the nature of the quantifier

We are often told, correctly, that modern logic originated with Frege. For Frege clearly depicted polyadic predication, negation, the conditional, and the quantifier as the bases of logic; moreover, he introduced the idea of a formal system, and argued that mathematical demonstrations, to be fully precise, must be carried out within a formal language by means of explicitly formulated syntactic rules. Consequently Frege has often been read as providing all the central notions that constitute our current understanding of quantification. For example, in his recent book on Frege [1973], Michael Dummett speaks of ”the semantics which [Frege] introduced for formulas of the language of predicate logic.” That is, “An interpretation of such a formula … is obtained by assigning entities of suitable kinds to the primitive nonlogical constants occurring in the formula … [T]his procedure is exactly the same as the modern semantic treatment of predicate logic” (pp. 89–90). Indeed, “Frege would therefore have had within his grasp the concepts necessary to frame the notion of the completeness of a formalization of logic as well as its soundness … but he did not do so” (p. 82). This common appraisal of Frege's work is, I think, quite misleading. Even given Frege's tremendous achievements, the road to an understanding of quantification theory was an arduous one. Obtaining such understanding and formulating those notions which are now common coin in the discussion of logical systems were the tasks of much of the work in logic during the nineteen-twenties.

[1]  K. Gödel Die Vollständigkeit der Axiome des logischen Funktionenkalküls , 1930 .

[2]  D. Hilbert Die logischen Grundlagen der Mathematik , 1922 .

[3]  Leopold Löwenheim Über Möglichkeiten im Relativkalkül , 1915 .

[4]  Wilhelm Ackermann,et al.  Begründung des „tertium non datur” mittels der Hilbertschen Theorie der Widerspruchsfreiheit , 1925 .

[5]  T. Skolem Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen , 1934 .

[6]  G. Gentzen Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .

[7]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[8]  G. Frege Über die Grundlagen der Geometrie. III. , 1906 .

[9]  W. Ackermann,et al.  Grundzuge der Theoretischen Logik , 1928 .

[10]  M. Dummett Frege: Philosophy of Language , 1973 .

[11]  L. Wittgenstein Tractatus Logico-Philosophicus , 2021, Nordic Wittgenstein Review.

[12]  Jens Erik Fenstad,et al.  Selected works in logic , 1970 .

[13]  T. Skolem,et al.  Über einige grundlagenfragen der mathematik , 1929 .

[14]  P. Bernays,et al.  Zum Entscheidungsproblem der mathematischen Logik , 1928 .

[15]  Max Black,et al.  Translations from the philosophical writings of Gottlob Frege , 1953 .

[16]  B. Russell The Principles of Mathematics , 1938 .

[17]  P. Bernays,et al.  Grundlagen der Mathematik , 1934 .

[18]  Gottlob Frege,et al.  The basic laws of arithmetic : exposition of the system , 1966 .

[19]  Wilhelm Ackermann,et al.  Zur Widerspruchsfreiheit der Zahlentheorie , 1940 .

[20]  David Hilbert Neubegründung der Mathematik. Erste Mitteilung , 1922 .

[21]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[22]  J. Neumann Eine Axiomatisierung der Mengenlehre. , 1925 .

[23]  W. Ackermann,et al.  Grundzüge der theoretischen Logik , 1928 .

[24]  H. Bedmann,et al.  Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem , 1922 .

[25]  D. Hilbert Über das Unendliche , 1926 .

[26]  B. Russell,et al.  Introduction to Mathematical Philosophy , 1920, The Mathematical Gazette.

[27]  E. Schröder Vorlesungen uber die Algebra der Logik , 1967 .

[28]  David Hilbert,et al.  Über die Grundlagen der Logik und der Arithmetik , 1905 .

[29]  Henry M. Sheffer Principia Mathematica. Whitehead, Alfred North , Russell, Bertrand , 1926 .

[30]  J. Neumann Zur Hilbertschen Beweistheorie , 1927 .