Temperature gradients in microelectrode measurements: Relevance and solutions for studies of SOFC electrode materials

Abstract Microelectrodes on solid electrolytes, contacted by current-collecting tips, have become increasingly important for analyzing electrochemical properties of electrode materials in solid state ionics. Samples are usually asymmetrically heated from the bottom side. It is shown experimentally, e.g. by thermovoltage measurements, impedance spectroscopy and infrared camera pictures, as well as by finite element modeling that substantial temperature gradients may arise in these experiments. Consequences in terms of data analysis are discussed and ways to alleviate the problem are described. For a complete avoidance of the temperature inhomogeneity problem, a novel symmetrically heated micro-contact set-up was built.

[1]  Juergen Fleig,et al.  Thin film cathodes in SOFC research: How to identify oxygen reduction pathways? , 2013 .

[2]  Torben Jacobsen,et al.  Thermal memory effects at the Pt ∣ YSZ interface , 2001 .

[3]  E. Ahlgren,et al.  Thermoelectric power of YSZ , 1994 .

[4]  F. Baumann,et al.  Thin Film Microelectrodes in SOFC Electrode Research , 2006 .

[5]  F. Baumann,et al.  The polarization resistance of mixed conducting SOFC cathodes: A comparative study using thin film model electrodes , 2008 .

[6]  Koichi Yamada,et al.  Cathodic reaction mechanism for dense Sr-doped lanthanum manganite electrodes , 1996 .

[7]  Richard C. Alkire,et al.  Advances in electrochemical science and engineering , 1990 .

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  H. Wiemhöfer,et al.  Measurement of ionic conductivity in mixed conducting compounds using solid electrolyte microcontacts , 2000 .

[10]  J. Maier,et al.  Surface Kinetics and Mechanism of Oxygen Incorporation Into Ba1 − x Sr x Co y Fe1 − y O3 − δ SOFC Microelectrodes , 2010 .

[11]  J. Maier,et al.  The impedance of imperfect electrode contacts on solid electrolytes , 1996 .

[12]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[13]  A. Schintlmeister,et al.  Visualization of oxygen reduction sites at Pt electrodes on YSZ by means of 18O tracer incorporation: the width of the electrochemically active zone. , 2010, Physical chemistry chemical physics : PCCP.

[14]  Nobuhide Kasagi,et al.  Quantitative Characterization of SOFC Nickel-YSZ Anode Microstructure Degradation Based on Focused-Ion-Beam 3D-Reconstruction Technique , 2012 .

[15]  B. Santo,et al.  Solid State , 2012 .

[16]  B. Horrocks,et al.  Advances in Electrochemical Science and Engineering , 2000 .

[17]  L. Gauckler,et al.  The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes , 2001 .

[18]  Y. Shao-horn Oxygen Surface Exchange Kinetics on Sr-Substituted Lanthanum Manganite and Ferrite Thin-Film Microelectrodes , 2009 .

[19]  P. Shearing,et al.  3D reconstruction of SOFC anodes using a focused ion beam lift-out technique , 2009 .

[20]  Jürgen Fleig,et al.  Electrodes and electrolytes in micro-SOFCs: a discussion of geometrical constraints , 2004 .

[21]  Jürgen Fleig,et al.  The grain boundary impedance of random microstructures: numerical simulations and implications for the analysis of experimental data , 2002 .

[22]  Wilson K. S. Chiu,et al.  Nondestructive Reconstruction and Analysis of SOFC Anodes Using X-ray Computed Tomography at Sub-50 nm Resolution , 2008 .

[23]  Juergen Fleig,et al.  Investigation of the oxygen exchange mechanism on Pt|yttria stabilized zirconia at intermediate temperatures: Surface path versus bulk path , 2011, Electrochimica acta.

[24]  Torben Jacobsen,et al.  Three-phase-boundary dynamics at Pt/YSZ microelectrodes , 2007 .

[25]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[26]  Jürgen Fleig,et al.  Geometry Dependence of Cathode Polarization in Solid Oxide Fuel Cells Investigated by Defined Sr ‐ Doped LaMnO3 Microelectrodes , 1999 .

[27]  Juergen Fleig,et al.  On the variability of oxygen exchange kinetics of platinum model electrodes on yttria stabilized zirconia , 2013 .

[28]  G. Fafilek,et al.  Voltammetric studies of electrochemical processes at the interface Pt|YSZ between 300 and 600°C , 1997 .

[29]  L. Gauckler,et al.  Characterization of thin films for solid oxide fuel cells facilitated by micropatterning , 2011 .

[30]  E. Ivers-Tiffée,et al.  3D Electrode Microstructure Reconstruction and Modelling , 2009 .

[31]  Subhash C. Singhal,et al.  Estimation of Charge-Transfer Resistivity of La0.8Sr0.2MnO3 Cathode on Y 0.16Zr0.84 O 2 Electrolyte Using Patterned Electrodes , 2005 .

[32]  F. Aldinger,et al.  The influence of the solid electrolyte on the impedance of hydrogen oxidation at patterned Ni electrodes , 2010 .

[33]  Erik O. Ahlgren,et al.  Thermoelectric power of stabilized zirconia , 1995 .

[34]  Juergen Fleig,et al.  Investigation of O2 reduction on Pt/YSZ by means of thin film microelectrodes: The geometry dependence of the electrode impedance , 2010 .

[35]  J. Maier,et al.  Microcontact Impedance Spectroscopy at Single Grain Boundaries in Fe‐Doped SrTiO3 Polycrystals , 2001 .

[36]  R. Huggins Solid State Ionics , 1989 .

[37]  D. Tsvetkov,et al.  Defect structure and charge transfer in the double perovskite GdBaCo2O6 − δ , 2011 .

[38]  H. Habermeier,et al.  The geometry dependence of the polarization resistance of Sr-doped LaMnO3 microelectrodes on yttria-stabilized zirconia , 2002 .

[39]  Bilge Yildiz,et al.  Probing Oxygen Reduction Reaction Kinetics of Sr-Doped LaMnO3 Supported on Y2O3-Stabilized ZrO2 EIS of Dense, Thin-Film Microelectrodes , 2007 .

[40]  Marcio Gameiro,et al.  Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode , 2009 .

[41]  E. Garboczi,et al.  Experimental limitations in impedance spectroscopy: Part III. Effect of reference electrode geometry/position , 1997 .

[42]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[43]  R. Richards,et al.  Reference electrode placement and seals in electrochemical oxygen generators , 2000 .

[44]  Z. Ogumi,et al.  Preparation of Perovskite‐Type La1 − x Sr x MnO3 Films by Vapor‐Phase Processes and Their Electrochemical Properties , 1997 .

[45]  E. Rideal,et al.  Fuel Cells , 1958, Nature.