Measurement of the thermal expansion coefficient of an Al-Mg alloy at ultra-low temperatures

We describe a result coming from an experiment based on an Al-Mg alloy (~ 5% Mg) suspended bar hit by an electron beam and operated above and below the termperature of transition from superconducting to normal state of the material. The amplitude of the bar first longitudinal mode of oscillation, excited by the beam interacting with the bulk, and the energy deposited by the beam in the bar are the quantities measured by the experiment. These quantities, inserted in the equations describing the mechanism of the mode excitation and complemented by an independent measurement of the specific heat, allow us to determine the linear expansion coefficient of the material.

[1]  E. Coccia,et al.  Vibrational excitation induced by electron beam and cosmic rays in normal and superconductive aluminum bars , 2011, 1105.4724.

[2]  Very low temperature specific heat of Al 5056 , 2010 .

[3]  G. Prodi,et al.  IGEC2: A 17-month search for gravitational wave bursts in 2005-2007 , 2010, 1002.3515.

[4]  M. Lisitskiy Gamma-ray superconducting detector based on Abrikosov vortices: Principle of operation , 2009 .

[5]  Cern Geneva Switzerland,et al.  Experimental study of high energy electron interactions in a superconducting aluminum alloy resonant bar , 2009, 0901.1220.

[6]  G. Prodi,et al.  Results of the IGEC-2 search for gravitational wave bursts during 2005 , 2007, 0705.0688.

[7]  Acoustic detection of high-energy electrons in a superconducting niobium resonant bar , 2006 .

[8]  I. Heng,et al.  Calibration of the ALLEGRO resonant detector , 2005 .

[9]  Frascati,et al.  Particle acoustic detection in gravitational wave aluminum resonant antennas , 2005, gr-qc/0505009.

[10]  Fernando Sannibale,et al.  Commissioning of the DAΦNE beam test facility , 2003 .

[11]  A. Marini The Grüneisen Parameter for Aluminum in the Temperature Range 0.3–1.1 K , 2003 .

[12]  Y. Minenkov,et al.  Effect of cosmic rays on the resonant gravitational wave detector Nautilus at temperature T=1.5 K , 2002, gr-qc/0206079.

[13]  G. Weiss,et al.  Acoustic measurements of crystalline aluminum and of an aluminum alloy (Al 5056) , 2002 .

[14]  Carelli,et al.  Cosmic rays observed by the resonant gravitational wave detector NAUTILUS , 1999, Physical review letters.

[15]  Y. Minenkov,et al.  The gravitational wave detector NAUTILUS operating at T = 0.1 K , 1997 .

[16]  G. Vedovato,et al.  The ultracryogenic gravitational-wave detector AURIGA , 1997 .

[17]  F. Ricci,et al.  A cosmic-ray veto system for the gravitational wave detector NAUTILUS , 1995 .

[18]  Carelli,et al.  Long-term operation of the Rome "Explorer" cryogenic gravitational wave detector. , 1993, Physical review. D, Particles and fields.

[19]  W. Duffy Acoustic quality factor of aluminum alloys from 50 mK to 300 K , 1990 .

[20]  M. Caria,et al.  Observation of subnanosecond transients in a superconducting microstrip exposed to minimum ionizing radiation , 1990 .

[21]  Barish,et al.  Nuclearite flux limit from gravitational-wave detectors. , 1988, Physical review letters.

[22]  E. Coccia,et al.  Acoustic quality factor of an aluminium alloy for gravitational wave antennae below 1 K , 1984 .

[23]  B. Lautrup,et al.  Sonic search for monopoles, gravitational waves and newtorites , 1984 .

[24]  N. Cabibbo,et al.  Acoustic detection of superheavy monopoles in gravitational antennas , 1983 .

[25]  E. Coccia,et al.  Thermal and superconducting properties of an aluminium alloy for gravitational wave antennae below 1K , 1983 .

[26]  G. Strini,et al.  Excitation of resonant oscillations in a solid bar by 30‐MeV protons , 1980 .

[27]  K. Tsubono,et al.  Quality factor of vibration of aluminum alloy disks , 1978 .

[28]  F. R. Kroeger,et al.  Absolute linear thermal‐expansion measurements on copper and aluminum from 5 to 320 K , 1977 .

[29]  J. G. Collins,et al.  Thermal expansion of solids at low temperatures , 1974 .

[30]  G. K. White,et al.  The thermal expansion of aluminum below 35 K , 1973 .

[31]  B. L. Beron,et al.  Generation of mechanical vibrations by penetrating particles , 1969 .

[32]  R. Hake Thermodynamics of volume and pressure effects for type-II superconductors , 1968 .

[33]  E. Harris,et al.  Critical Field of Superconducting Aluminum as a Function of Pressure and Temperature above 0.3°K , 1968 .

[34]  G. A. Alers,et al.  Low‐Temperature Elastic Moduli of Aluminum , 1964 .

[35]  N. E. Phillips,et al.  HEAT CAPACITY OF ALUMINUM BETWEEN 0.1 K AND 4.0 K , 1959 .