Formal proofs of transcendence for e and pi as an application of multivariate and symmetric polynomials
暂无分享,去创建一个
Pierre-Yves Strub | Yves Bertot | Laurence Rideau | Sophie Bernard | Yves Bertot | Pierre-Yves Strub | L. Rideau | Sophie Bernard
[1] Guillaume Melquiond,et al. Coquelicot: A User-Friendly Library of Real Analysis for Coq , 2015, Math. Comput. Sci..
[2] Cyril Cohen,et al. Refinements for Free! , 2013, CPP.
[3] Jeremy Avigad,et al. A Machine-Checked Proof of the Odd Order Theorem , 2013, ITP.
[4] I. Niven. A Simple Proof that is irrational , 2009 .
[5] J. Coolidge. Sherlock Holmes in Babylon: The Number e , 2003 .
[6] C. Mortici,et al. The Number e , 2017 .
[7] Laurent Théry,et al. A Machine-Checked Implementation of Buchberger's Algorithm , 2001, Journal of Automated Reasoning.
[8] Lawrence Charles Paulson,et al. Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .
[9] Bernhard Schölkopf,et al. A Tutorial Introduction , 2001 .
[10] W. Schreiner,et al. Towards abstract and executable multivariate polynomials in Isabelle , 2014 .
[11] Manuel Eberl. The Transcendence of π , 2018, Arch. Formal Proofs.
[12] Ivan Niven. A simple proof that $\pi$ is irrational , 1947 .
[13] Charles Hermite,et al. Œuvres de Charles Hermite: Sur la fonction exponentielle , 1874 .
[14] I. Niven. A Simple Proof that π is Irrational , 2000 .
[15] Jesse D. Bingham,et al. Formalizing a Proof that e is Transcendental , 2011, J. Formaliz. Reason..
[16] Assia Mahboubi,et al. Proving Formally the Implementation of an Efficient gcd Algorithm for Polynomials , 2006, IJCAR.
[17] Georges Gonthier,et al. Formal Proof—The Four- Color Theorem , 2008 .
[18] John Harrison,et al. HOL Light: A Tutorial Introduction , 1996, FMCAD.
[19] Paul B. Jackson. Exploring Abstract Algebra in Constructive Type Theory , 1994, CADE.
[20] F. Lindemann. Ueber die Zahl π.*) , 1882 .
[21] César A. Muñoz,et al. Formalization of Bernstein Polynomials and Applications to Global Optimization , 2013, Journal of Automated Reasoning.
[22] Vincent Siles,et al. A Refinement-Based Approach to Computational Algebra in Coq , 2012, ITP.
[23] Len Berggren,et al. Sur la Fonction Exponentielle , 2004 .