Formal proofs of transcendence for e and pi as an application of multivariate and symmetric polynomials

We describe the formalisation in Coq of a proof that the numbers `e` and `pi` are transcendental. This proof lies at the interface of two domains of mathematics that are often considered separately: calculus (real and elementary complex analysis) and algebra. For the work on calculus, we rely on the Coquelicot library and for the work on algebra, we rely on the Mathematical Components library. Moreover, some of the elements of our formalized proof originate in the more ancient library for real numbers included in the Coq distribution. The case of `pi` relies extensively on properties of multivariate polynomials and this experiment was also an occasion to put to test a newly developed library for these multivariate polynomials.

[1]  Guillaume Melquiond,et al.  Coquelicot: A User-Friendly Library of Real Analysis for Coq , 2015, Math. Comput. Sci..

[2]  Cyril Cohen,et al.  Refinements for Free! , 2013, CPP.

[3]  Jeremy Avigad,et al.  A Machine-Checked Proof of the Odd Order Theorem , 2013, ITP.

[4]  I. Niven A Simple Proof that is irrational , 2009 .

[5]  J. Coolidge Sherlock Holmes in Babylon: The Number e , 2003 .

[6]  C. Mortici,et al.  The Number e , 2017 .

[7]  Laurent Théry,et al.  A Machine-Checked Implementation of Buchberger's Algorithm , 2001, Journal of Automated Reasoning.

[8]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[9]  Bernhard Schölkopf,et al.  A Tutorial Introduction , 2001 .

[10]  W. Schreiner,et al.  Towards abstract and executable multivariate polynomials in Isabelle , 2014 .

[11]  Manuel Eberl The Transcendence of π , 2018, Arch. Formal Proofs.

[12]  Ivan Niven A simple proof that $\pi$ is irrational , 1947 .

[13]  Charles Hermite,et al.  Œuvres de Charles Hermite: Sur la fonction exponentielle , 1874 .

[14]  I. Niven A Simple Proof that π is Irrational , 2000 .

[15]  Jesse D. Bingham,et al.  Formalizing a Proof that e is Transcendental , 2011, J. Formaliz. Reason..

[16]  Assia Mahboubi,et al.  Proving Formally the Implementation of an Efficient gcd Algorithm for Polynomials , 2006, IJCAR.

[17]  Georges Gonthier,et al.  Formal Proof—The Four- Color Theorem , 2008 .

[18]  John Harrison,et al.  HOL Light: A Tutorial Introduction , 1996, FMCAD.

[19]  Paul B. Jackson Exploring Abstract Algebra in Constructive Type Theory , 1994, CADE.

[20]  F. Lindemann Ueber die Zahl π.*) , 1882 .

[21]  César A. Muñoz,et al.  Formalization of Bernstein Polynomials and Applications to Global Optimization , 2013, Journal of Automated Reasoning.

[22]  Vincent Siles,et al.  A Refinement-Based Approach to Computational Algebra in Coq , 2012, ITP.

[23]  Len Berggren,et al.  Sur la Fonction Exponentielle , 2004 .