Physical structure and inversion charge at a semiconductor interface with a crystalline oxide.

We show that the physical and electrical structure and hence the inversion charge for crystalline oxides on semiconductors can be understood and systematically manipulated at the atomic level. Heterojunction band offset and alignment are adjusted by atomic-level structural and chemical changes, resulting in the demonstration of an electrical interface between a polar oxide and a semiconductor free of interface charge. In a broader sense, we take the metal oxide semiconductor device to a new and prominent position in the solid-state electronics timeline. It can now be extensively developed using an entirely new physical system: the crystalline oxides-on-semiconductors interface.

[1]  V. Wood,et al.  Epitaxial growth of Pb(Zr0.2Ti0.8)O3 on Si and its nanoscale piezoelectric properties , 2001 .

[2]  J. C. Phillips,et al.  Limitations for aggressively scaled CMOS Si devices due to bond coordination constraints and reduced band offset energies at Si-high-K dielectric interfaces , 2000 .

[3]  R. Droopad,et al.  Band discontinuities at epitaxial SrTiO3/Si(001) heterojunctions , 2000 .

[4]  J. Robertson Band offsets of wide-band-gap oxides and implications for future electronic devices , 2000 .

[5]  B. E. Kane,et al.  Silicon‐Based Quantum Computation , 2000, quant-ph/0003031.

[6]  J. Curless,et al.  Field effect transistors with SrTiO3 gate dielectric on Si , 2000 .

[7]  Evgeni P. Gusev,et al.  Structure and stability of ultrathin zirconium oxide layers on Si(001) , 2000 .

[8]  Veena Misra,et al.  Bonding constraints and defect formation at interfaces between crystalline silicon and advanced single layer and composite gate dielectrics , 1999 .

[9]  C. W. Chen,et al.  Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate , 1999 .

[10]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[11]  Ming-Ta Hsieh,et al.  MOSFET transistors fabricated with high permitivity TiO/sub 2/ dielectrics , 1997 .

[12]  David B. Janes,et al.  Molecular beam epitaxy of nonstoichiometric semiconductors and multiphase material systems , 1996 .

[13]  G. Jellison,et al.  Optical functions of transparent thin films of SrTiO(3), BaTiO(3), and SiO(x) determined by spectroscopic ellipsometry. , 1994, Applied optics.

[14]  Walker,et al.  Interface stability and the growth of optical quality perovskites on MgO. , 1994, Physical review letters.

[15]  R. Raj,et al.  BaSi2 and thin film alkaline earth silicides on silicon , 1993 .

[16]  David E. Zelmon,et al.  Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon , 1991 .

[17]  J. Tersoff Schottky Barrier Heights and the Continuum of Gap States , 1984 .

[18]  J. R. Brews,et al.  Theory of the carrier‐density fluctuations in an IGFET near threshold , 1975 .

[19]  W. J. Merz,et al.  Domain Formation and Domain Wall Motions in Ferroelectric BaTiO 3 Single Crystals , 1954 .