Self-avoiding walks on a simple cubic lattice
暂无分享,去创建一个
[1] Jean Dayantis,et al. Monte Carlo precise determination of the end-to-end distribution function of self-avoiding walks on the simple-cubic lattice , 1991 .
[2] D. Chandler,et al. Monte Carlo study of polymers in equilibrium with random obstacles , 1992 .
[3] A. Sokal,et al. The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk , 1988 .
[4] D. C. Rapaport,et al. On three-dimensional self-avoiding walks , 1985 .
[5] J. Bouchaud,et al. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .
[6] J. Gillis,et al. CORRIGENDUM On the shape and configuration of polymer molecules , 1965 .
[7] D. S. McKenzie,et al. Shape of self-avoiding walk or polymer chain , 1971 .
[8] Ted G. Lewis,et al. Generalized Feedback Shift Register Pseudorandom Number Algorithm , 1973, JACM.
[9] P. Gennes. Scaling Concepts in Polymer Physics , 1979 .
[10] Z. Alexandrowicz,et al. Monte Carlo of Chains with Excluded Volume: a Way to Evade Sample Attrition , 1969 .
[11] B. Chirikov,et al. Patterns in chaos , 1991 .
[12] Sidney Redner,et al. Distribution functions in the interior of polymer chains , 1980 .
[13] P. Flory. Principles of polymer chemistry , 1953 .
[14] J. Clarke,et al. Investigation of the end‐to‐end distance distribution function for random and self‐avoiding walks in two and three dimensions , 1991 .
[15] J. D. Cloizeaux,et al. Lagrangian theory for a self-avoiding random chain , 1974 .
[16] Michael E. Fisher,et al. Shape of a Self‐Avoiding Walk or Polymer Chain , 1966 .
[17] J. Klafter,et al. Trapping aspects in enhanced diffusion , 1991 .