Interface Engineering for All‐Inorganic CsPbI2Br Perovskite Solar Cells with Efficiency over 14%

In this work, a SnO2/ZnO bilayered electron transporting layer (ETL) aimed to achieve low energy loss and large open‐circuit voltage (Voc) for high‐efficiency all‐inorganic CsPbI2Br perovskite solar cells (PVSCs) is introduced. The high‐quality CsPbI2Br film with regular crystal grains and full coverage can be realized on the SnO2/ZnO surface. The higher‐lying conduction band minimum of ZnO facilitates desirable cascade energy level alignment between the perovskite and SnO2/ZnO bilayered ETL with superior electron extraction capability, resulting in a suppressed interfacial trap‐assisted recombination with lower charge recombination rate and greater charge extraction efficiency. The as‐optimized all‐inorganic PVSC delivers a high Voc of 1.23 V and power conversion efficiency (PCE) of 14.6%, which is one of the best efficiencies reported for the Cs‐based all‐inorganic PVSCs to date. More importantly, decent thermal stability with only 20% PCE loss is demonstrated for the SnO2/ZnO‐based CsPbI2Br PVSCs after being heated at 85 °C for 300 h. These findings provide important interface design insights that will be crucial to further improve the efficiency of all‐inorganic PVSCs in the future.

[1]  Lei Yan,et al.  Efficient and Stable Perovskite Solar Cells via Dual Functionalization of Dopamine Semiquinone Radical with Improved Trap Passivation Capabilities , 2018 .

[2]  Hui Bian,et al.  3D–2D–0D Interface Profiling for Record Efficiency All‐Inorganic CsPbBrI2 Perovskite Solar Cells with Superior Stability , 2018 .

[3]  Bo Li,et al.  Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells , 2018, Nature Communications.

[4]  Y. Mai,et al.  All-Inorganic CsPbI2Br Perovskite Solar Cells with High Efficiency Exceeding 13. , 2018, Journal of the American Chemical Society.

[5]  Haotong Wei,et al.  Polymer‐Passivated Inorganic Cesium Lead Mixed‐Halide Perovskites for Stable and Efficient Solar Cells with High Open‐Circuit Voltage over 1.3 V , 2018, Advanced materials.

[6]  Huicong Liu,et al.  Inorganic Perovskite Solar Cells: A Rapidly Growing Field , 2018 .

[7]  T. Leijtens,et al.  Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation , 2018 .

[8]  David T. Limmer,et al.  Thermochromic halide perovskite solar cells , 2018, Nature Materials.

[9]  Yixin Zhao,et al.  A Facile Low Temperature Fabrication of High Performance CsPbI2Br All‐Inorganic Perovskite Solar Cells , 2018 .

[10]  Jingjing Zhao,et al.  Stabilizing the α-Phase of CsPbI3 Perovskite by Sulfobetaine Zwitterions in One-Step Spin-Coating Films , 2017 .

[11]  Matthew C. Beard,et al.  Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells , 2017, Science Advances.

[12]  Michael Grätzel,et al.  Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells , 2017, Science Advances.

[13]  Chien-Yu Chen,et al.  Boosting thin-film perovskite solar cell efficiency through vacuum-deposited sub-nanometer small-molecule electron interfacial layers , 2017 .

[14]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[15]  Myung Sun Jung,et al.  Unveiling the Crystal Formation of Cesium Lead Mixed-Halide Perovskites for Efficient and Stable Solar Cells. , 2017, The journal of physical chemistry letters.

[16]  Shihe Yang,et al.  Dual Interfacial Modifications Enable High Performance Semitransparent Perovskite Solar Cells with Large Open Circuit Voltage and Fill Factor , 2017 .

[17]  Joshua J. Choi,et al.  Improved Charge Collection in Highly Efficient CsPbBrI2 Solar Cells with Light-Induced Dealloying , 2017 .

[18]  Hung‐Yu Lin,et al.  All‐Vacuum‐Deposited Stoichiometrically Balanced Inorganic Cesium Lead Halide Perovskite Solar Cells with Stabilized Efficiency Exceeding 11% , 2017, Advanced materials.

[19]  Q. Akkerman,et al.  Strongly emissive perovskite nanocrystal inks for high-voltage solar cells , 2016, Nature Energy.

[20]  Liduo Wang,et al.  Mixed Cation FAxPEA1–xPbI3 with Enhanced Phase and Ambient Stability toward High‐Performance Perovskite Solar Cells , 2017 .

[21]  T. Chen,et al.  All-Inorganic Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[22]  Michael D. McGehee,et al.  Light-Induced Phase Segregation in Halide-Perovskite Absorbers , 2016 .

[23]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[24]  M. Green,et al.  Hole Transport Layer Free Inorganic CsPbIBr2 Perovskite Solar Cell by Dual Source Thermal Evaporation , 2016 .

[25]  Jay B. Patel,et al.  Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells , 2016 .

[26]  Xiao-Fang Jiang,et al.  Improving Film Formation and Photovoltage of Highly Efficient Inverted‐Type Perovskite Solar Cells through the Incorporation of New Polymeric Hole Selective Layers , 2016 .

[27]  Franco Cacialli,et al.  Inorganic caesium lead iodide perovskite solar cells , 2015 .

[28]  F. Huang,et al.  Phosphonium Halides as Both Processing Additives and Interfacial Modifiers for High Performance Planar-Heterojunction Perovskite Solar Cells. , 2015, Small.

[29]  Jin Young Kim,et al.  Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells , 2015, Nature Communications.

[30]  Shihe Yang,et al.  High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer , 2015 .

[31]  H. Bolink,et al.  Trap‐Assisted Non‐Radiative Recombination in Organic–Inorganic Perovskite Solar Cells , 2015, Advanced materials.

[32]  Mohammad Khaja Nazeeruddin,et al.  Predicting the Open‐Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non‐Radiative Recombination , 2015 .

[33]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[34]  F. Huang,et al.  Metallohalide perovskite–polymer composite film for hybrid planar heterojunction solar cells , 2015 .

[35]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[36]  H. Lee,et al.  Polyfluorene Derivatives are High‐Performance Organic Hole‐Transporting Materials for Inorganic−Organic Hybrid Perovskite Solar Cells , 2014 .

[37]  Kwanghee Lee,et al.  Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer , 2014 .

[38]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[39]  Liming Ding,et al.  An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. , 2014, Nanoscale.

[40]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[41]  G. Lerario,et al.  Investigating charge dynamics in halide perovskite-sensitized mesostructured solar cells , 2014 .

[42]  Ivan Mora-Sero,et al.  Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[43]  Zhe Li,et al.  Trap-induced losses in hybrid photovoltaics. , 2014, ACS nano.

[44]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[45]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[46]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[47]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[48]  Alan J. Heeger,et al.  Intensity dependence of current-voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells. , 2013, ACS nano.

[49]  Yihong Chen,et al.  Pyridine-based electron transporting materials for highly efficient organic solar cells , 2013 .

[50]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[51]  Valentin D. Mihailetchi,et al.  Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells , 2005 .

[52]  V. Mihailetchi,et al.  Space-charge limited photocurrent. , 2005, Physical review letters.