Temperature Dependent Luminescence of Yellow‐Emitting α‐Sialon:Eu2+ Oxynitride Phosphors for White Light‐Emitting Diodes

Yellow-emitting α-sialon:Eu 2+ phosphors have been reported as interesting down-conversion luminescent materials in white LEDs. In this work, the thermal quenching of α-sialon:Eu 2+ with the compositions of M val (m/val+) Si 12-(m+n) Al m+n O n N 16-n (M = Ca, Mg, Lu) is studied by investigating the effects of chemical composition, activator concentration, and substitution cation on the temperature-dependent luminescence. The chemical composition of α-sialon:Eu 2+ was varied in a wide range (0.5 ≤ m ≤ 2.0, 1≤n≤1.8). It shows that the m value significantly affects the thermal quenching of α-sialon, whereas the n value hardly does. This difference is ascribed to the obvious lattice expansion and the increase of absolute activator concentration as m increases. The thermal quenching increases with increasing the Eu 2+ concentration, which is due to enhanced Stokes shift. The type of substitution cation also has an influence on thermal quenching. Among the substitution cations in this work, Lu-α-sialon:Eu 2+ exhibits largest thermal quenching. Photoionization is considered as the mechanism for the thermal quenching of Lu-α-sialon: Eu 2+ .

[1]  Htjm Bert Hintzen,et al.  Phase formation of Ca-α-sialon by reaction sintering , 1996 .

[2]  R. Xie,et al.  Warm-white light-emitting diode with yellowish orange SiALON ceramic phosphor. , 2004, Optics letters.

[3]  T. Sekiguchi,et al.  Strong Green Emission from α-SiAlON Activated by Divalent Ytterbium under Blue Light Irradiation , 2005 .

[4]  K. Machida,et al.  Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white light-emitting-diode illumination , 2006 .

[5]  R. Xie,et al.  Eu2+-doped Ca-α-SiAlON: A yellow phosphor for white light-emitting diodes , 2004 .

[6]  K. Kimoto,et al.  Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes , 2005 .

[7]  Pieter Dorenbos,et al.  Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds , 2005 .

[8]  A. G. Cullis,et al.  The 310–340 nm ultraviolet light emitting diodes grown using a thin GaN interlayer on a high temperature AlN buffer , 2008 .

[9]  P. Dorenbos Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds , 2003 .

[10]  Mamoru Mitomo,et al.  Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors , 2006 .

[11]  R. Xie,et al.  Powder Synthesis of Ca-α‘-SiAlON as a Host Material for Phosphors , 2005 .

[12]  T. Sekiguchi,et al.  Blue-emitting AlN:Eu2+ nitride phosphor for field emission displays , 2007 .

[13]  Naoto Hirosaki,et al.  A Simple, Efficient Synthetic Route to Sr2Si5N8:Eu2+‐Based Red Phosphors for White Light‐Emitting Diodes. , 2007 .

[14]  Jinwang Li,et al.  Synthesis of a Multinary Nitride, Eu-Doped CaAlSiN3, from Alloy at Low Temperatures , 2008 .

[15]  R. Xie,et al.  Crystal structure and photoluminescence of Mn2+–Mg2+ codoped gamma aluminum oxynitride (γ-AlON): A promising green phosphor for white light-emitting diodes , 2008 .

[16]  F. Stadler,et al.  Highly efficient all‐nitride phosphor‐converted white light emitting diode , 2005 .

[17]  Mamoru Mitomo,et al.  Preparation and Luminescence Spectra of Calcium- and Rare-Earth (R = Eu, Tb, and Pr)-Codoped α-SiAlON Ceramics , 2004 .

[18]  Mamoru Mitomo,et al.  Wavelength-tunable and thermally stable Li-α-sialon:Eu2+ oxynitride phosphors for white light-emitting diodes , 2006 .

[19]  N. Hirosaki,et al.  Luminescence Properties of a Red Phosphor, CaAlSiN3 : Eu2 + , for White Light-Emitting Diodes , 2006 .