Speedup of quantum evolution of multiqubit entanglement states

As is well known, quantum speed limit time (QSLT) can be used to characterize the maximal speed of evolution of quantum systems. We mainly investigate the QSLT of generalized N-qubit GHZ-type states and W-type states in the amplitude-damping channels. It is shown that, in the case N qubits coupled with independent noise channels, the QSLT of the entangled GHZ-type state is closely related to the number of qubits in the small-scale system. And the larger entanglement of GHZ-type states can lead to the shorter QSLT of the evolution process. However, the QSLT of the W-type states are independent of the number of qubits and the initial entanglement. Furthermore, by considering only M qubits among the N-qubit system respectively interacting with their own noise channels, QSLTs for these two types states are shorter than in the case N qubits coupled with independent noise channels. We therefore reach the interesting result that the potential speedup of quantum evolution of a given N-qubit GHZ-type state or W-type state can be realized in the case the number of the applied noise channels satisfying M < N.

[1]  H. Fan,et al.  Classical-driving-assisted quantum speed-up , 2014, 1410.7106.

[2]  Sebastian Deffner,et al.  Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics. , 2015, Physical review letters.

[3]  Pfeifer How fast can a quantum state change with time? , 1993, Physical review letters.

[4]  Andrew Peterman A tough climb , 2012 .

[5]  S Montangero,et al.  Optimal control at the quantum speed limit. , 2009, Physical review letters.

[6]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[7]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[8]  J. H. Eberly,et al.  Genuinely multipartite concurrence of N -qubit X matrices , 2012, 1208.2706.

[9]  M. Zwierz,et al.  Comment on "Geometric derivation of the quantum speed limit" , 2012, 1207.2208.

[10]  Daniel A. Lidar,et al.  Quantum Speed Limits for Leakage and Decoherence. , 2015, Physical review letters.

[11]  Aharonov,et al.  Geometry of quantum evolution. , 1990, Physical review letters.

[12]  T. Toffoli,et al.  Fundamental limit on the rate of quantum dynamics: the unified bound is tight. , 2009, Physical review letters.

[13]  Lian-Ao Wu,et al.  Fundamental Speed Limits to the Generation of Quantumness , 2015, Scientific Reports.

[14]  S. Lloyd,et al.  Quantum limits to dynamical evolution , 2002, quant-ph/0210197.

[15]  Gerhard C. Hegerfeldt High-speed driving of a two-level system , 2014 .

[16]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[17]  Zhen-Yu Xu,et al.  Quantum-speed-limit time for multiqubit open systems , 2014, 1410.8239.

[18]  Andrew D. Greentree,et al.  Diamond for Quantum Computing , 2008, Science.

[19]  S. Lloyd Computational capacity of the universe. , 2001, Physical review letters.

[20]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[21]  Lev Vaidman,et al.  Minimum time for the evolution to an orthogonal quantum state , 1992 .

[22]  A. Plastino,et al.  Two particles in a double well: illustrating the connection between entanglement and the speed of quantum evolution , 2006 .

[23]  *Contributed equally to the work , 2010 .

[24]  J. Bekenstein Energy Cost of Information Transfer , 1981 .

[25]  M B Plenio,et al.  Quantum speed limits in open system dynamics. , 2012, Physical review letters.

[26]  Light-shift-induced quantum gates for ions in thermal motion. , 2001, Physical review letters.

[27]  Jian-Wei Pan,et al.  Experimental entanglement of six photons in graph states , 2006, quant-ph/0609130.

[28]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[29]  R. Chaves,et al.  Scaling laws for the decay of multiqubit entanglement. , 2008, Physical review letters.

[30]  I. Tamm,et al.  The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics , 1991 .

[31]  Tommaso Calarco,et al.  Speeding up and slowing down the relaxation of a qubit by optimal control , 2013, 1307.7964.

[32]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[33]  N. Margolus,et al.  The maximum speed of dynamical evolution , 1997, quant-ph/9710043.

[34]  P. Pfeifer,et al.  Generalized time-energy uncertainty relations and bounds on lifetimes of resonances , 1995 .

[35]  A. Plastino,et al.  Entanglement and the lower bounds on the speed of quantum , 2006, quant-ph/0608249.

[36]  Sebastian Deffner,et al.  Energy–time uncertainty relation for driven quantum systems , 2011, 1104.5104.

[37]  Sebastian Deffner Optimal control of a qubit in an optical cavity , 2014, 1404.3137.

[38]  Shunlong Luo,et al.  Quantum speedup in a memory environment , 2013, 1311.1593.

[39]  Lorenzo Maccone,et al.  Using entanglement against noise in quantum metrology. , 2014, Physical review letters.

[40]  G. N. Fleming A unitarity bound on the evolution of nonstationary states , 1973 .

[41]  Wei Han,et al.  Quantum speed limit for arbitrary initial states , 2013, Scientific Reports.

[42]  E. Lutz,et al.  Quantum speed limit for non-Markovian dynamics. , 2013, Physical review letters.

[43]  R. Fischer,et al.  Time-optimal universal control of two-level systems under strong driving , 2014, 1402.4234.

[44]  G. Adesso,et al.  Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence , 2013, 1304.1163.

[45]  M. M. Taddei,et al.  Quantum speed limit for physical processes. , 2012, Physical review letters.

[46]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[47]  Guang-Can Guo,et al.  Experimental recovery of quantum correlations in absence of system-environment back-action , 2013, Nature Communications.

[48]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[49]  E. Lutz,et al.  Generalized clausius inequality for nonequilibrium quantum processes. , 2010, Physical review letters.

[50]  B. M. Fulk MATH , 1992 .

[51]  H. Walther,et al.  Preparing pure photon number states of the radiation field , 2000, Nature.

[52]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[53]  F. Frowis Kind of entanglement that speeds up quantum evolution , 2012, 1204.1212.

[54]  Pieter Kok,et al.  Geometric derivation of the quantum speed limit , 2010, 1003.4870.

[55]  G. C. Hegerfeldt,et al.  Driving at the quantum speed limit: optimal control of a two-level system. , 2013, Physical review letters.