Isogeometric analysis of nonlinear Euler–Bernoulli beam vibrations
暂无分享,去创建一个
[1] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[2] D. F. Rogers,et al. An Introduction to NURBS: With Historical Perspective , 2011 .
[3] Giancarlo Sangalli,et al. Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.
[4] Fu Xiaojin,et al. Isogeometric Analysis Toward Integration of CAD and CAE , 2011 .
[5] Anh-Vu Vuong,et al. ISOGAT: A 2D tutorial MATLAB code for Isogeometric Analysis , 2010, Comput. Aided Geom. Des..
[6] R. Duvigneau,et al. On the role played by NURBS weights in isogeometric structural shape optimization , 2010 .
[7] David J. Wagg,et al. Nonlinear Vibration with Control for Flexible and Adaptive Structures Series: Solid Mechanics and Its Applications, Vol. 170 , 2010 .
[8] T. Hughes,et al. Efficient quadrature for NURBS-based isogeometric analysis , 2010 .
[9] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[10] Martin Aigner,et al. Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.
[11] T. Hughes,et al. Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .
[12] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[13] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[14] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[15] Pedro Ribeiro,et al. Non-linear forced vibrations of thin/thick beams and plates by the finite element and shooting methods , 2004 .
[16] D. Inman. Nonlinearity in Structural Dynamics: Detection, Identification and Modelling , 2002 .
[17] G. Farin. Curves and Surfaces for Cagd: A Practical Guide , 2001 .
[18] Pedro Ribeiro,et al. HIERARCHICAL FINITE ELEMENT ANALYSES OF GEOMETRICALLY NON-LINEAR VIBRATION OF BEAMS AND PLANE FRAMES , 2001 .
[19] S. H. A. Chen,et al. Nonlinear Vibration of Plane Structures by Finite Element and Incremental Harmonic Balance Method , 2001 .
[20] Jerry H. Ginsberg,et al. Mechanical and Structural Vibrations: Theory and Applications , 2001 .
[21] Wing Kam Liu,et al. Nonlinear Finite Elements for Continua and Structures , 2000 .
[22] Maurice Petyt,et al. NON-LINEAR VIBRATION OF BEAMS WITH INTERNAL RESONANCE BY THE HIERARCHICAL FINITE-ELEMENT METHOD , 1999 .
[23] Roman Lewandowski,et al. Computational formulation for periodic vibration of geometrically nonlinear structures—part 1: Theoretical background , 1997 .
[24] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[25] A. Nayfeh,et al. Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .
[26] S. K. Korovin,et al. Approximation Procedures in Nonlinear Oscillation Theory , 1994 .
[27] Qinghua Zheng,et al. Parallel harmonic balance , 1993, VLSI.
[28] Roman Lewandowski,et al. Non-linear, steady-state vibration of structures by harmonic balance/finite element method , 1992 .
[29] S. H. A. Chen,et al. Application of the incremental harmonic balance method to cubic non-linearity systems , 1990 .
[30] Wanda Szemplińska-Stupnicka,et al. The Behavior of Nonlinear Vibrating Systems , 1990 .
[31] E. Allgower,et al. Introduction to Numerical Continuation Methods , 1987 .
[32] A. Ferri. On the Equivalence of the Incremental Harmonic Balance Method and the Harmonic Balance-Newton Raphson Method , 1986 .
[33] 渡部 卓郎,et al. Displacement Incrementation in Non-Linear Structural Analysis by the Self-Correcting Method , 1978 .
[34] D. Griffin,et al. Finite-Element Analysis , 1975 .
[35] J. Oden. Finite Elements of Nonlinear Continua , 1971 .