Isogeometric analysis of nonlinear Euler–Bernoulli beam vibrations

[1]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[2]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[3]  Giancarlo Sangalli,et al.  Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.

[4]  Fu Xiaojin,et al.  Isogeometric Analysis Toward Integration of CAD and CAE , 2011 .

[5]  Anh-Vu Vuong,et al.  ISOGAT: A 2D tutorial MATLAB code for Isogeometric Analysis , 2010, Comput. Aided Geom. Des..

[6]  R. Duvigneau,et al.  On the role played by NURBS weights in isogeometric structural shape optimization , 2010 .

[7]  David J. Wagg,et al.  Nonlinear Vibration with Control for Flexible and Adaptive Structures Series: Solid Mechanics and Its Applications, Vol. 170 , 2010 .

[8]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[9]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[10]  Martin Aigner,et al.  Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.

[11]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[12]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[13]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[14]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[15]  Pedro Ribeiro,et al.  Non-linear forced vibrations of thin/thick beams and plates by the finite element and shooting methods , 2004 .

[16]  D. Inman Nonlinearity in Structural Dynamics: Detection, Identification and Modelling , 2002 .

[17]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[18]  Pedro Ribeiro,et al.  HIERARCHICAL FINITE ELEMENT ANALYSES OF GEOMETRICALLY NON-LINEAR VIBRATION OF BEAMS AND PLANE FRAMES , 2001 .

[19]  S. H. A. Chen,et al.  Nonlinear Vibration of Plane Structures by Finite Element and Incremental Harmonic Balance Method , 2001 .

[20]  Jerry H. Ginsberg,et al.  Mechanical and Structural Vibrations: Theory and Applications , 2001 .

[21]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[22]  Maurice Petyt,et al.  NON-LINEAR VIBRATION OF BEAMS WITH INTERNAL RESONANCE BY THE HIERARCHICAL FINITE-ELEMENT METHOD , 1999 .

[23]  Roman Lewandowski,et al.  Computational formulation for periodic vibration of geometrically nonlinear structures—part 1: Theoretical background , 1997 .

[24]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[25]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[26]  S. K. Korovin,et al.  Approximation Procedures in Nonlinear Oscillation Theory , 1994 .

[27]  Qinghua Zheng,et al.  Parallel harmonic balance , 1993, VLSI.

[28]  Roman Lewandowski,et al.  Non-linear, steady-state vibration of structures by harmonic balance/finite element method , 1992 .

[29]  S. H. A. Chen,et al.  Application of the incremental harmonic balance method to cubic non-linearity systems , 1990 .

[30]  Wanda Szemplińska-Stupnicka,et al.  The Behavior of Nonlinear Vibrating Systems , 1990 .

[31]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[32]  A. Ferri On the Equivalence of the Incremental Harmonic Balance Method and the Harmonic Balance-Newton Raphson Method , 1986 .

[33]  渡部 卓郎,et al.  Displacement Incrementation in Non-Linear Structural Analysis by the Self-Correcting Method , 1978 .

[34]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[35]  J. Oden Finite Elements of Nonlinear Continua , 1971 .