The pro-apoptotic Bcl-2 family member tBid localizes to mitochondrial contact sites

[1]  Xu Luo,et al.  Endonuclease G is an apoptotic DNase when released from mitochondria , 2001, Nature.

[2]  W. Zong,et al.  BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. , 2001, Genes & development.

[3]  M. V. Vander Heiden,et al.  Bcl-x l Promotes the Open Configuration of the Voltage-dependent Anion Channel and Metabolite Passage through the Outer Mitochondrial Membrane* , 2001, The Journal of Biological Chemistry.

[4]  S. Korsmeyer,et al.  Proapoptotic BAX and BAK: A Requisite Gateway to Mitochondrial Dysfunction and Death , 2001, Science.

[5]  V. Mootha,et al.  A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c , 2001, The EMBO journal.

[6]  P. Bernardi,et al.  A mitochondrial perspective on cell death. , 2001, Trends in biochemical sciences.

[7]  Dominique,et al.  Mitochondrial Contact Sites , 2001 .

[8]  M. Crompton Mitochondrial intermembrane junctional complexes and their role in cell death , 2000, The Journal of physiology.

[9]  Xu Luo,et al.  Cardiolipin provides specificity for targeting of tBid to mitochondria , 2000, Nature Cell Biology.

[10]  Christian Renken,et al.  Preservation of Mitochondrial Structure and Function after Bid- or Bax-Mediated Cytochrome c Release , 2000, The Journal of cell biology.

[11]  Grzegorz Kudla,et al.  The Destabilization of Lipid Membranes Induced by the C-terminal Fragment of Caspase 8-cleaved Bid Is Inhibited by the N-terminal Fragment* , 2000, The Journal of Biological Chemistry.

[12]  Xiaodong Wang,et al.  Smac, a Mitochondrial Protein that Promotes Cytochrome c–Dependent Caspase Activation by Eliminating IAP Inhibition , 2000, Cell.

[13]  T G Frey,et al.  The internal structure of mitochondria. , 2000, Trends in biochemical sciences.

[14]  E. Doran,et al.  Cytochrome c release from isolated rat liver mitochondria can occur independently of outer-membrane rupture: possible role of contact sites. , 2000, The Biochemical journal.

[15]  G A Perkins,et al.  Recent structural insight into mitochondria gained by microscopy. , 2000, Micron.

[16]  Matthew G. Vander Heiden,et al.  Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? , 1999, Nature Cell Biology.

[17]  A. Azem,et al.  Domain structure and lipid interaction of recombinant yeast Tim44. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Zimmerberg,et al.  Bax, but not Bcl-xL, decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  M. V. Heiden,et al.  Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. , 1999, Molecular cell.

[20]  Mark H. Ellisman,et al.  Neuronal Acetylcholine Receptors with α7 Subunits Are Concentrated on Somatic Spines for Synaptic Signaling in Embryonic Chick Ciliary Ganglia , 1999, The Journal of Neuroscience.

[21]  Thomas E. Creighton,et al.  Encyclopedia of molecular biology. , 1999 .

[22]  Xiaodong Wang,et al.  Bid, a Bcl2 Interacting Protein, Mediates Cytochrome c Release from Mitochondria in Response to Activation of Cell Surface Death Receptors , 1998, Cell.

[23]  Junying Yuan,et al.  Cleavage of BID by Caspase 8 Mediates the Mitochondrial Damage in the Fas Pathway of Apoptosis , 1998, Cell.

[24]  Dean P. Jones,et al.  Superoxide in Apoptosis , 1998, The Journal of Biological Chemistry.

[25]  G A Perkins,et al.  Electron tomography of large, multicomponent biological structures. , 1997, Journal of structural biology.

[26]  M. V. Heiden,et al.  Bcl-xL Regulates the Membrane Potential and Volume Homeostasis of Mitochondria , 1997, Cell.

[27]  S J Young,et al.  Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. , 1997, Journal of structural biology.

[28]  B. Yu,et al.  Inhibition of adenine nucleotide translocator by lipid peroxidation products. , 1995, Free radical biology & medicine.

[29]  B. Hoffmann,et al.  The reconstituted ADP/ATP carrier activity has an absolute requirement for cardiolipin as shown in cysteine mutants. , 1994, The Journal of biological chemistry.

[30]  P Louisot,et al.  Mitochondrial contact sites. Lipid composition and dynamics. , 1990, The Journal of biological chemistry.

[31]  E. Carafoli,et al.  Cardiolipin is the membrane receptor for mitochondrial creatine phosphokinase. , 1985, The Journal of biological chemistry.

[32]  C. Hackenbrock Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[33]  F. Collins,et al.  Principles of Biochemistry , 1937, The Indian Medical Gazette.