Antimatter production in proton-proton and heavy-ion collisions at ultrarelativistic energies

One of the striking features of particle production at high beam energies is the near-equal abundance of matter and antimatter in the central rapidity region. In this paper we study how this symmetry is reached as the beam energy is increased. In particular, we quantify explicitly the energy dependence of the approach to matter-antimatter symmetry in proton-proton and in heavy-ion collisions. Expectations are presented also for the production of more complex forms of antimatter such as antihypernuclei.

[1]  J. H. Thomas,et al.  Observation of the antimatter helium-4 nucleus , 2011, Nature.

[2]  H. Stoecker,et al.  Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions , 2010, 1010.2995.

[3]  K. Redlich,et al.  Probing freeze-out conditions in heavy ion collisions with moments of charge fluctuations , 2010, 1007.2581.

[4]  J. G. Contreras,et al.  Midrapidity antiproton-to-proton ratio in pp collisons at sqrt[s]=0.9 and 7 TeV measured by the ALICE experiment. , 2010, Physical review letters.

[5]  Y Wang,et al.  Observation of an Antimatter Hypernucleus , 2010, Science.

[6]  V. Cerný,et al.  The NA49 Collaboration , 2009 .

[7]  et al,et al.  Systematic measurements of identified particle spectra in pp, d+Au, and Au+Au collisions at the STAR detector , 2008, 0808.2041.

[8]  P. Castorina,et al.  The thermal production of strange and non-strange hadrons in e+e− collisions , 2008, 0805.0964.

[9]  V. Cerný,et al.  Pion and kaon production in central Pb+Pb collisions at 20A and 30A GeV: Evidence for the onset of deconfinement , 2007, 0710.0118.

[10]  J. Cleymans,et al.  Chemical equilibrium in collisions of small systems , 2007, 0707.3879.

[11]  M. Botje,et al.  Energy and centrality dependence of [anti]-p and p production and the [anti-]Λ /[anti-]p ratio in Pb+Pb collisions between 20A GeV and 158A GeV , 2006 .

[12]  A. Andronic,et al.  Hadron production in central nucleus-nucleus collisions at chemical freeze-out , 2005, nucl-th/0511071.

[13]  J. Cleymans,et al.  Comparison of chemical freeze-out criteria in heavy-ion collisions , 2005, hep-ph/0511094.

[14]  J. Cleymans,et al.  Statistical-thermal model calculations using THERMUS , 2004, hep-ph/0412031.

[15]  J. Cleymans,et al.  THERMUS - A thermal model package for ROOT , 2004, Comput. Phys. Commun..

[16]  S. Kabana,et al.  An investigation of the antinuclei and nuclei production mechanism in Pb + Pb collisions at 158 A GeV , 2003 .

[17]  B. Ioffe,et al.  Formation of antideuterons in heavy-ion collisions , 2003, hep-ph/0302052.

[18]  P. Braun-Munzinger,et al.  Maximum relative strangeness content in heavy-ion collisions around 30 A GeV , 2001, hep-ph/0106066.

[19]  S. Kabana,et al.  Mapping out the QCD phase transition in multiparticle production , 2000, hep-ph/0010247.

[20]  R. Rapp,et al.  Resolving the antibaryon-production puzzle in high-energy heavy-ion collisions. , 2000, Physical review letters.

[21]  K. Redlich,et al.  Canonical description of strangeness enhancement from p–A to Pb–Pb collisions , 2000, hep-ph/0006024.

[22]  J. Cleymans,et al.  Influence of impact parameter on thermal description of relativistic heavy ion collisions at (1-2)A GeV , 1998, nucl-th/9809027.

[23]  J. Cleymans,et al.  UNIFIED DESCRIPTION OF FREEZE-OUT PARAMETERS IN RELATIVISTIC HEAVY ION COLLISIONS , 1998, nucl-th/9808030.

[24]  F. Becattini,et al.  Thermal hadron production in pp and $$p\bar p$$ collisions , 1997, hep-ph/9702274.

[25]  P. Braun-Munzinger,et al.  Probing the phase boundary between hadronic matter and the quark-gluon plasma in relativistic heavy-ion collisions , 1996, nucl-th/9606017.

[26]  J. Cleymans,et al.  Thermal hadron production in high energy heavy ion collisions , 1992, hep-ph/9207204.

[27]  H. Stöcker,et al.  The quantum statistical model of fragment formation: Entropy and temperature extraction in heavy ion collisions , 1988 .

[28]  H. Stöcker,et al.  High energy heavy ion collisions—probing the equation of state of highly excited hardronic matter , 1986 .

[29]  R. Hagedorn,et al.  Statistical thermodynamics in relativistic particle and ion physics: Canonical or grand canonical? , 1985 .

[30]  K. Yazaki,et al.  On the coalescence model for high energy nuclear reactions , 1981 .

[31]  M. Danos,et al.  The importance of the reaction volume in hadronic collisions , 1980 .

[32]  A. Mekjian Thermodynamic model for composite-particle emission in relativistic heavy-ion collisions , 1977 .

[33]  S. T. Butler,et al.  PERTURBATION THEORY FOR THE CREATION OF DEUTERONS FROM HIGH ENERGY PROTON BOMBARDMENT OF MATTER , 1961 .

[34]  J. Pniewski,et al.  Delayed disintegration of a heavy nuclear fragment: I , 1953 .

[35]  W. Heisenberg,et al.  Mesonenerzeugung als Stoßwellenproblem , 1952 .

[36]  W. Marsden I and J , 2012 .

[37]  R. Hwa,et al.  Quark-Gluon Plasma 3 , 2004 .

[38]  Keijo Kajantie Quark Matter '84 , 1985 .

[39]  R. Hagedorn Hadronic matter near the boiling point , 1968 .

[40]  L. Landau On the multiparticle production in high-energy collisions , 1953 .

[41]  I. Pomeranchuk On the theory of multiple particle production in a single collision , 1951 .