A graph-based algorithm for the multi-objective optimization of gene regulatory networks

The evolution of gene regulatory networks in variable environments poses Multi-objective Optimization Problem (MOP), where the expression levels of genes must be tuned to meet the demands of each environment. When formalized in the context of monotone systems, this problem falls into a sub-class of linear MOPs. Here, the constraints are partial orders and the objectives consist of either the minimization or maximization of single variables, but their number can be very large. To efficiently and exhaustively find Pareto optimal solutions, we introduce a mapping between coloured Hasse diagrams and polytopes associated with an ideal point. A dynamic program based on edge contractions yields an exact closed-form description of the Pareto optimal set, in polynomial time of the number of objectives relative to the number of faces of the Pareto front. We additionnally discuss the special case of series-parallel graphs with monochromatic connected components of bounded size, for which the running time and the representation of solutions can in principle be linear in the number of objectives.

[1]  Mark Voorneveld,et al.  Characterization of Pareto dominance , 2003, Oper. Res. Lett..

[2]  P. Yu,et al.  The set of all nondominated solutions in linear cases and a multicriteria simplex method , 1975 .

[3]  Frank J. Poelwijk,et al.  Tradeoffs and Optimality in the Evolution of Gene Regulation , 2011, Cell.

[4]  Francky Catthoor,et al.  Pareto-optimization-based run-time task scheduling for embedded systems , 2003, First IEEE/ACM/IFIP International Conference on Hardware/ Software Codesign and Systems Synthesis (IEEE Cat. No.03TH8721).

[5]  Twan Basten,et al.  An algebra of Pareto points , 2005, Fifth International Conference on Application of Concurrency to System Design (ACSD'05).

[6]  J. Ecker,et al.  Generating all maximal efficient faces for multiple objective linear programs , 1980 .

[7]  B. Davey,et al.  Introduction to Lattices and Order: Ordered sets , 2002 .

[8]  Xavier Gandibleux,et al.  An Annotated Bibliography of Multiobjective Combinatorial Optimization , 2000 .

[9]  Stephen F. Smith,et al.  From precedence constraint posting to partial order schedules: A CSP approach to Robust Scheduling , 2007, AI Commun..

[10]  Stig W. Omholt,et al.  Monotonicity is a key feature of genotype-phenotype maps , 2013, Front. Genet..

[11]  César Hervás-Martínez,et al.  Predicting patient survival after liver transplantation using evolutionary multi-objective artificial neural networks , 2013, Artif. Intell. Medicine.

[12]  V. Hakim,et al.  Design of genetic networks with specified functions by evolution in silico. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Baykasoğlu,et al.  A TABOO SEARCH BASED APPROACH TO FIND THE PARETO OPTIMAL SET IN MULTIPLE OBJECTIVE OPTIMIZATION , 1999 .

[14]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[15]  David Angeli,et al.  Monotone control systems , 2003, IEEE Trans. Autom. Control..

[16]  Aryeh Warmflash,et al.  Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives , 2012, Physical biology.

[17]  Carlos A. Coello Coello,et al.  Many-Objective Problems: Challenges and Methods , 2015, Handbook of Computational Intelligence.

[18]  Steven Skiena,et al.  Implementing discrete mathematics - combinatorics and graph theory with Mathematica , 1990 .

[19]  Matthias Ehrgott,et al.  Output-sensitive Complexity of Multiobjective Combinatorial Optimization , 2016, ArXiv.

[20]  O Shoval,et al.  Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space , 2012, Science.

[21]  Clarisse Dhaenens,et al.  K-PPM: A new exact method to solve multi-objective combinatorial optimization problems , 2010, Eur. J. Oper. Res..

[22]  Vilfredo Pareto,et al.  Manuale di economia politica , 1965 .

[23]  Peter J. Fleming,et al.  Evolutionary algorithms in control systems engineering: a survey , 2002 .

[24]  Andreas Löhne,et al.  The vector linear program solver Bensolve - notes on theoretical background , 2015, Eur. J. Oper. Res..

[25]  Eduardo D. Sontag,et al.  Molecular Systems Biology and Control , 2005, Eur. J. Control.

[26]  M. Carter Foundations of mathematical economics , 2001 .

[27]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[28]  U. Alon An introduction to systems biology : design principles of biological circuits , 2019 .

[29]  Matthias Ehrgott,et al.  Multiple Criteria Decision Analysis , 2016 .

[30]  Subbarao Kambhampati,et al.  Planning Graph as a (Dynamic) CSP: Exploiting EBL, DDB and other CSP Search Techniques in Graphplan , 2000, J. Artif. Intell. Res..

[31]  R. Kishony,et al.  Pervasive selection for and against antibiotic resistance in inhomogeneous multistress environments , 2016, Nature Communications.

[32]  Lizhen Shao,et al.  A dual variant of Benson’s “outer approximation algorithm” for multiple objective linear programming , 2012, J. Glob. Optim..

[33]  U. Sauer,et al.  Multidimensional Optimality of Microbial Metabolism , 2012, Science.

[34]  Rolf Niedermeier,et al.  Parameterized complexity: exponential speed-up for planar graph problems , 2004, J. Algorithms.

[35]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..