S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S batteries

[1]  H. Schneider,et al.  Electrolyte decomposition and gas evolution in a lithium-sulfur cell upon long-term cycling , 2017 .

[2]  L. M. Rodriguez-Martinez,et al.  Polymer-Rich Composite Electrolytes for All-Solid-State Li-S Cells. , 2017, The journal of physical chemistry letters.

[3]  L. M. Rodriguez-Martinez,et al.  Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li-S Cell. , 2017, The journal of physical chemistry letters.

[4]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[5]  Benjamin J. Frogley,et al.  Titelbild: A Metallaanthracene and Derived Metallaanthraquinone (Angew. Chem. 1/2017) , 2017 .

[6]  Xingguo Qi,et al.  Novel Li[(CF3SO2)(n-C4F9SO2)N]-Based Polymer Electrolytes for Solid-State Lithium Batteries with Superior Electrochemical Performance. , 2016, ACS applied materials & interfaces.

[7]  L. M. Rodriguez-Martinez,et al.  Inverse vulcanization of sulfur with divinylbenzene: Stable and easy processable cathode material for lithium-sulfur batteries , 2016 .

[8]  Yi Cui,et al.  Designing high-energy lithium-sulfur batteries. , 2016, Chemical Society reviews.

[9]  Lide M. Rodriguez-Martinez,et al.  Estimation of energy density of Li-S batteries with liquid and solid electrolytes , 2016 .

[10]  Juchen Guo,et al.  Challenges and current development of sulfur cathode in lithium–sulfur battery , 2016 .

[11]  Kookheon Char,et al.  Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense , 2016 .

[12]  G. G. Eshetu,et al.  In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium-Imide- and Lithium-Imidazole-Based Electrolytes. , 2016, ACS applied materials & interfaces.

[13]  Jens Tübke,et al.  Lithium–Sulfur Cells: The Gap between the State‐of‐the‐Art and the Requirements for High Energy Battery Cells , 2015 .

[14]  Moon Jeong Park,et al.  Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries , 2015, Nature Communications.

[15]  K. Char,et al.  Kilogram scale inverse vulcanization of elemental sulfur to prepare high capacity polymer electrodes for Li‐S batteries , 2015 .

[16]  J. Hassoun,et al.  A lithium-ion sulfur battery using a polymer, polysulfide-added membrane , 2015, Scientific Reports.

[17]  Jiulin Wang,et al.  Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility , 2014 .

[18]  Heng Zhang,et al.  Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte , 2014 .

[19]  Yang‐Kook Sun,et al.  Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution. , 2013, ChemSusChem.

[20]  K. Char,et al.  The use of elemental sulfur as an alternative feedstock for polymeric materials. , 2013, Nature chemistry.

[21]  R. Dedryvère,et al.  Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study , 2007 .

[22]  Joon-Ho Shin,et al.  Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes , 2003 .

[23]  K. Striebel,et al.  Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes , 2000 .

[24]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[25]  Lide M. Rodriguez-Martinez,et al.  Review—Solid Electrolytes for Safe and High Energy Density Lithium-Sulfur Batteries: Promises and Challenges , 2018 .

[26]  Jiaqi Huang,et al.  The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection , 2017 .

[27]  Jan D. Miller,et al.  Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries , 2017 .

[28]  Xingguo Qi,et al.  Impact of Anionic Structure of Lithium Salt on the Cycling Stability of Lithium-Metal Anode in Li-S Batteries , 2016 .

[29]  Mengyun Nie,et al.  Role of Lithium Salt on Solid Electrolyte Interface (SEI) Formation and Structure in Lithium Ion Batteries , 2014 .