Descriptive tools for the analysis of texture projects with large datasets using MTEX: strength, symmetry and components
暂无分享,去创建一个
Helmut Schaeben | Ralf Hielscher | David Mainprice | Florian Bachmann | H. Schaeben | D. Mainprice | R. Hielscher | F. Bachmann
[1] K. Kunze,et al. Crystallographic fabrics of omphacite, rutile and quartz in Vendée eclogites (Armorican Massif, France). Consequences for deformation mechanisms and regimes , 2001 .
[2] L. E. Weiss,et al. Symmetry Concepts in the Structural Analysis of Deformed Rocks , 1961 .
[3] Analysis of elastic symmetry from velocity measurements with application to dunite and bronzitite , 1988 .
[4] P. Curie. Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique , 1894 .
[5] F. Boudier,et al. Mechanisms of flow in naturally and experimentally deformed peridotites , 1973 .
[6] S. R. Jammalamadaka,et al. Directional Statistics, I , 2011 .
[7] H. Bunge. 14 – Mathematical Aids , 1982 .
[8] Anil K. Jain,et al. Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.
[9] Richard J. Lisle,et al. The use of the orientation tensor for the description and statistical testing of fabrics , 1985 .
[10] K. Kunze,et al. High shear strain of olivine aggregates: rheological and seismic consequences. , 2000, Science.
[11] L. Meister,et al. A concise quaternion geometry of rotations , 2005 .
[12] Maher Moakher,et al. The Closest Elastic Tensor of Arbitrary Symmetry to an Elasticity Tensor of Lower Symmetry , 2006, cond-mat/0608311.
[13] G. S. Watson,et al. The Statistics of Orientation Data , 1966, The Journal of Geology.
[14] K. Mardia. Statistics of Directional Data , 1972 .
[15] H. Bunge,et al. Symmetries in texture analysis , 1985 .
[16] H. Schaeben,et al. Entropy optimization in quantitative texture analysis , 1988 .
[17] Helmut Schaeben,et al. Calculating anisotropic physical properties from texture data using the MTEX open-source package , 2011 .
[18] O. Engler,et al. Introduction to texture analysis : macrotexture, microtexture and orientation mapping , 2000 .
[19] Adam Morawiec,et al. Orientations and Rotations: Computations in Crystallographic Textures , 1999 .
[20] P. Silver,et al. Interpretation of SKS-waves using samples from the subcontinental lithosphere , 1993 .
[21] Helmut Schaeben,et al. A novel pole figure inversion method: specification of the MTEX algorithm , 2008 .
[22] Helmut Schaeben,et al. Grain detection from 2d and 3d EBSD data--specification of the MTEX algorithm. , 2011, Ultramicroscopy.
[23] B. Ábalos. Omphacite fabric variation in the Cabo Ortegal eclogite (NW Spain): relationships with strain symmetry during high-pressure deformation , 1997 .
[24] Y. Chastel,et al. Viscoplastic self‐consistent and equilibrium‐based modeling of olivine lattice preferred orientations: Implications for the upper mantle seismic anisotropy , 2000 .
[25] S. Karato,et al. The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation , 2005 .
[26] Ricardo A. Lebensohn,et al. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : application to zirconium alloys , 1993 .
[27] H. Schaeben. Texture Approximation or Texture Modelling with Components Represented by the von Mises–Fisher Matrix Distribution on SO(3) and the Bingham Distribution on S4++ , 1996 .
[28] H. Schaeben,et al. The Bingham Distribution of Quaternions and Its Spherical Radon Transform in Texture Analysis , 2004 .
[29] D. Mainprice,et al. Does cation ordering in omphacite influence development of lattice-preferred orientation? , 2005 .
[30] Adam Morawiec,et al. Orientations and Rotations , 2004 .
[31] H. Bunge,et al. Generalization of the Concept of Sample Symmetry- Fuzzy Symmetry,Symmetroids, Similarity , 1997 .
[32] Bruno Sander,et al. Gefügekunde der Gesteine : mit besonderer Berücksichtigung der Tektonite , 1930 .
[33] G. Backus. A geometrical picture of anisotropic elastic tensors , 1970 .
[34] Elias Wegert,et al. Inferential statistics of electron backscatter diffraction data from within individual crystalline grains , 2010 .
[35] H. Grimmer. The distribution of disorientation angles if all relative orientations of neighbouring grains are equally probable , 1979 .
[36] F. Vollmer. An application of eigenvalue methods to structural domain analysis , 1990 .
[37] H. Schaeben,et al. On the entropy to texture index relationship in quantitative texture analysis , 2007 .
[38] R. Fisher. Dispersion on a sphere , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[39] M. Darot,et al. Study of Directional Data Distributions from Principal Preferred Orientation Axes , 1976, The Journal of Geology.
[40] J. Bascou,et al. Plastic deformation and development of clinopyroxene lattice preferred orientations in eclogites , 2002 .
[41] H. Wenk. Preferred orientation in deformed metals and rocks : an introduction to modern texture analysis , 1985 .
[42] Christopher Bingham. An Antipodally Symmetric Distribution on the Sphere , 1974 .
[43] S. Chevrot,et al. Decomposition of the elastic tensor and geophysical applications , 2004 .
[44] G. S. Watson. Statistics on Spheres , 1983 .
[45] W. B. Ismail,et al. An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy , 1998 .
[46] Nigel Woodcock,et al. Specification of fabric shapes using an eigenvalue method , 1977 .
[47] J. Dixon,et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. , 2000, Science.
[48] R. Arts,et al. General Anisotropic Elastic Tensor In Rocks: Approximation, Invariants, And Particular Directions , 1991 .
[49] H. Nagahama,et al. Curie Symmetry Principle: Does It Constrain the Analysis of Structural Geology? , 2000 .
[50] A. Tommasi,et al. Feedbacks between deformation and melt distribution in the crust-mantle transition zone of the Oman ophiolite , 2012 .