Descriptive tools for the analysis of texture projects with large datasets using MTEX: strength, symmetry and components

Abstract This paper presents the background for the calculation of various numbers that can be used to characterize crystal-preferred orientation (CPO), also known as texture in materials science, for large datasets using the combined scripting possibilities of MTEX and MatLab®. The paper is focused on three aspects in particular: the strength of CPO represented by orientation and misorientation distribution functions (ODFs, MDFs) or pole figures (PFs); symmetry of PFs and components of ODFs; and elastic tensors. The traditional measurements of texture strength of ODFs, MDFs and PFs are integral measurements of the distribution squared. The M-index is a partial measure of the MDF as the difference between uniform and measured misorientation angles. In addition there other parameters based on eigen analysis, but there are restrictions on their use. Eigen analysis does provide some shape factors for the distributions. The maxima of an ODF provides information on the modes. MTEX provides an estimate of the lower bound uniform fraction of an ODF. Finally, we illustrate the decomposition of arbitrary elastic tensor into symmetry components as an example of components in anisotropic physical properties. Ten examples scripts and their output are provided in the appendix.

[1]  K. Kunze,et al.  Crystallographic fabrics of omphacite, rutile and quartz in Vendée eclogites (Armorican Massif, France). Consequences for deformation mechanisms and regimes , 2001 .

[2]  L. E. Weiss,et al.  Symmetry Concepts in the Structural Analysis of Deformed Rocks , 1961 .

[3]  Analysis of elastic symmetry from velocity measurements with application to dunite and bronzitite , 1988 .

[4]  P. Curie Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique , 1894 .

[5]  F. Boudier,et al.  Mechanisms of flow in naturally and experimentally deformed peridotites , 1973 .

[6]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[7]  H. Bunge 14 – Mathematical Aids , 1982 .

[8]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[9]  Richard J. Lisle,et al.  The use of the orientation tensor for the description and statistical testing of fabrics , 1985 .

[10]  K. Kunze,et al.  High shear strain of olivine aggregates: rheological and seismic consequences. , 2000, Science.

[11]  L. Meister,et al.  A concise quaternion geometry of rotations , 2005 .

[12]  Maher Moakher,et al.  The Closest Elastic Tensor of Arbitrary Symmetry to an Elasticity Tensor of Lower Symmetry , 2006, cond-mat/0608311.

[13]  G. S. Watson,et al.  The Statistics of Orientation Data , 1966, The Journal of Geology.

[14]  K. Mardia Statistics of Directional Data , 1972 .

[15]  H. Bunge,et al.  Symmetries in texture analysis , 1985 .

[16]  H. Schaeben,et al.  Entropy optimization in quantitative texture analysis , 1988 .

[17]  Helmut Schaeben,et al.  Calculating anisotropic physical properties from texture data using the MTEX open-source package , 2011 .

[18]  O. Engler,et al.  Introduction to texture analysis : macrotexture, microtexture and orientation mapping , 2000 .

[19]  Adam Morawiec,et al.  Orientations and Rotations: Computations in Crystallographic Textures , 1999 .

[20]  P. Silver,et al.  Interpretation of SKS-waves using samples from the subcontinental lithosphere , 1993 .

[21]  Helmut Schaeben,et al.  A novel pole figure inversion method: specification of the MTEX algorithm , 2008 .

[22]  Helmut Schaeben,et al.  Grain detection from 2d and 3d EBSD data--specification of the MTEX algorithm. , 2011, Ultramicroscopy.

[23]  B. Ábalos Omphacite fabric variation in the Cabo Ortegal eclogite (NW Spain): relationships with strain symmetry during high-pressure deformation , 1997 .

[24]  Y. Chastel,et al.  Viscoplastic self‐consistent and equilibrium‐based modeling of olivine lattice preferred orientations: Implications for the upper mantle seismic anisotropy , 2000 .

[25]  S. Karato,et al.  The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation , 2005 .

[26]  Ricardo A. Lebensohn,et al.  A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : application to zirconium alloys , 1993 .

[27]  H. Schaeben Texture Approximation or Texture Modelling with Components Represented by the von Mises–Fisher Matrix Distribution on SO(3) and the Bingham Distribution on S4++ , 1996 .

[28]  H. Schaeben,et al.  The Bingham Distribution of Quaternions and Its Spherical Radon Transform in Texture Analysis , 2004 .

[29]  D. Mainprice,et al.  Does cation ordering in omphacite influence development of lattice-preferred orientation? , 2005 .

[30]  Adam Morawiec,et al.  Orientations and Rotations , 2004 .

[31]  H. Bunge,et al.  Generalization of the Concept of Sample Symmetry- Fuzzy Symmetry,Symmetroids, Similarity , 1997 .

[32]  Bruno Sander,et al.  Gefügekunde der Gesteine : mit besonderer Berücksichtigung der Tektonite , 1930 .

[33]  G. Backus A geometrical picture of anisotropic elastic tensors , 1970 .

[34]  Elias Wegert,et al.  Inferential statistics of electron backscatter diffraction data from within individual crystalline grains , 2010 .

[35]  H. Grimmer The distribution of disorientation angles if all relative orientations of neighbouring grains are equally probable , 1979 .

[36]  F. Vollmer An application of eigenvalue methods to structural domain analysis , 1990 .

[37]  H. Schaeben,et al.  On the entropy to texture index relationship in quantitative texture analysis , 2007 .

[38]  R. Fisher Dispersion on a sphere , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[39]  M. Darot,et al.  Study of Directional Data Distributions from Principal Preferred Orientation Axes , 1976, The Journal of Geology.

[40]  J. Bascou,et al.  Plastic deformation and development of clinopyroxene lattice preferred orientations in eclogites , 2002 .

[41]  H. Wenk Preferred orientation in deformed metals and rocks : an introduction to modern texture analysis , 1985 .

[42]  Christopher Bingham An Antipodally Symmetric Distribution on the Sphere , 1974 .

[43]  S. Chevrot,et al.  Decomposition of the elastic tensor and geophysical applications , 2004 .

[44]  G. S. Watson Statistics on Spheres , 1983 .

[45]  W. B. Ismail,et al.  An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy , 1998 .

[46]  Nigel Woodcock,et al.  Specification of fabric shapes using an eigenvalue method , 1977 .

[47]  J. Dixon,et al.  Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. , 2000, Science.

[48]  R. Arts,et al.  General Anisotropic Elastic Tensor In Rocks: Approximation, Invariants, And Particular Directions , 1991 .

[49]  H. Nagahama,et al.  Curie Symmetry Principle: Does It Constrain the Analysis of Structural Geology? , 2000 .

[50]  A. Tommasi,et al.  Feedbacks between deformation and melt distribution in the crust-mantle transition zone of the Oman ophiolite , 2012 .