Stochastic free vibration of orthotropic plates using generalized polynomial chaos expansion

This paper presents the theory and application of the generalized polynomial chaos expansion for the stochastic free vibration of orthotropic plates. Specifically, the stochastic analysis of orthotropic plates under the uncertainties in elasticity moduli is investigated. The uncertain moduli, eigen-frequencies and eigen-modes of the plates are represented by truncated polynomial chaos expansions with arbitrary random basis. The expansions are substituted in the governing differential equations to calculating the polynomial chaos coefficients of the eigen-frequencies and the eigen-modes. Distribution functions of the uncertain moduli are derived from experimental data where the Pearson model is used to identify the type of density functions. This realization then is employed to construct random orthogonal basis for each uncertain parameter. Because of available experimental modal analysis data, this paper provides a useful practical example on the efficacy of polynomial chaos where the statistical moments and the probability distributions of modal responses are compared with experimental results.

[1]  Noureddine Bouhaddi,et al.  Reduction of the stochastic finite element models using a robust dynamic condensation method , 2006 .

[2]  A. Sarkar,et al.  Mid-frequency structural dynamics with parameter uncertainty , 2001 .

[3]  D. Yadav,et al.  Non-linear free vibration of laminated composite plate with random material properties , 2004 .

[4]  N. Wiener The Homogeneous Chaos , 1938 .

[5]  Ding Zhou,et al.  Natural frequencies of elastically restrained rectangular plates using a set of static beam functions in the Rayleigh-Ritz method , 1995 .

[6]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[7]  S. Lin,et al.  Reliability predictions of laminated composite plates with random system parameters , 2000 .

[8]  Jeroen A. S. Witteveen,et al.  Probabilistic collocation for period-1 limit cycle oscillations , 2008 .

[9]  Pol D. Spanos,et al.  A stochastic Galerkin expansion for nonlinear random vibration analysis , 1993 .

[10]  Isaac Elishakoff,et al.  Probabilistic Theory of Structures , 1983 .

[11]  Rubens Sampaio,et al.  Obtaining Mode Shapes through the Karhunen-Loève Expansion for Distributed-Parameter Linear Systems , 2002 .

[12]  I. Elishakoff,et al.  Reliability of laminated plates via the first-order second-moment method , 1990 .

[13]  C. Soares,et al.  Spectral stochastic finite element analysis for laminated composite plates , 2008 .

[14]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[15]  Pol D. Spanos,et al.  Spectral Stochastic Finite-Element Formulation for Reliability Analysis , 1991 .

[16]  G. B. Warburton,et al.  The Vibration of Rectangular Plates , 1954 .

[17]  Su-huan Chen,et al.  Perturbation method for computing eigenvalue bounds in structural vibration systems with interval parameters , 1994 .

[18]  Christian Soize A comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamics , 2005 .

[19]  J. Reddy Mechanics of laminated composite plates : theory and analysis , 1997 .

[20]  C. S. Manohar,et al.  DYNAMIC ANALYSIS OF FRAMED STRUCTURES WITH STATISTICAL UNCERTAINTIES , 1999 .

[21]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[22]  M. Ohsaki,et al.  Developability conditions for prestress optimization of a curved surface , 2003 .

[23]  N.G.R. Iyengar,et al.  Analysis of composite plates with random material characteristics , 1993 .

[24]  Steffen Marburg,et al.  UNCERTAINTY QUANTIFICATION IN STOCHASTIC SYSTEMS USING POLYNOMIAL CHAOS EXPANSION , 2010 .

[25]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[26]  Robert J. Ross,et al.  Wood handbook : wood as an engineering material , 2010 .

[27]  S. Marburg,et al.  NUMERICAL SOLUTION OF ONE-DIMENSIONAL WAVE EQUATION WITH STOCHASTIC PARAMETERS USING GENERALIZED POLYNOMIAL CHAOS EXPANSION , 2007 .

[28]  Helmut J. Pradlwarter,et al.  A computational procedure to estimate the stochastic dynamic response of large non-linear FE-models , 2003 .

[29]  Arthur W. Leissa,et al.  Vibration and buckling of rectangular composite plates with variable fiber spacing , 1990 .

[30]  G. Schuëller,et al.  Uncertain linear systems in dynamics: Retrospective and recent developments by stochastic approaches , 2009 .

[31]  Egon S. Pearson,et al.  Some problems arising in approximating to probability distributions, using moments , 1963 .

[32]  Umberto Iemma,et al.  An Extended Karhunen-Loève Decomposition for Modal Identification of Inhomogeneous Structures , 2006 .

[33]  René de Borst,et al.  Object-oriented stochastic finite element analysis of fibre metal laminates , 2005 .

[34]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[35]  A. Young,et al.  Application of the spectral stochastic finite element method for performance prediction of composite structures , 2007 .

[36]  Wing Kam Liu,et al.  Random field finite elements , 1986 .

[37]  G. Stefanou The stochastic finite element method: Past, present and future , 2009 .

[38]  N.G.R. Iyengar,et al.  Response of composite plates with random material properties using FEM and Monte Carlo simulation , 1998 .