An Eulerian approach to fluid–structure interaction and goal‐oriented mesh adaptation

We propose an Eulerian framework for modelling fluid-structure interaction (FSI) of incompressible fluids and elastic structures. The model is based on an Eulerian approach for describing structural dynamics. This is achieved by tracking the movement of the initial positions of all 'material' points. In this approach the displacement appears as a primary variable in an Eulerian framework. Our approach uses a technique which is similar to the level set method in so far that it also tracks initial data, in our case the set of initial positions (IP), and from this determines to which 'phase' a point belongs. To avoid the occasional reinitialization of the initial position set we employ the harmonic continuation of the structure velocity field into the fluid domain. By using the IP set for tracking the structure displacement, we can ensure that corners and edges of the fluid-structure interface are preserved well. Based on this monolythic model of the FSI we apply the Dual Weighted Residual (DWR) method for goal-oriented a posteriori error estimation to stationary FSI problems. Examples are presented based on the model and for the goal-oriented local mesh adaptation.

[1]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[2]  P. Saramito,et al.  A new $\theta $ -scheme algorithm and incompressible FEM for viscoelastic fluid flows , 1994 .

[3]  Ernst Heinrich Hirschel,et al.  Flow Simulation with High-Performance Computers II , 1996 .

[4]  R. Maccormack Numerical Methods for the Navier-Stokes Equations , 1985 .

[5]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[6]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[7]  Steffen Müller-Urbaniak,et al.  Eine Analyse des Zwischenschritt-Theta-Verfahrens zur Lösung der instationären Navier-Stokes-Gleichungen , 1993 .

[8]  Harold A. Buetow,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[9]  P. Kloucek,et al.  Stability of the fractional step T-scheme for the nonstationary Navier-Stokes equations , 1994 .

[10]  Daniel D. Joseph,et al.  Fundamentals of two-fluid dynamics , 1993 .

[11]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[12]  T. Belytschko,et al.  An Eulerian–Lagrangian method for fluid–structure interaction based on level sets , 2006 .

[13]  J. Tinsley Oden,et al.  Finite Elements, Computational Aspects, Vol. III. , 1985 .

[14]  Antonio Huerta,et al.  Viscous flow with large free surface motion , 1988 .

[15]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[16]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods/ J. A. Sethian , 1999 .

[17]  Roland Becker,et al.  A Two-Level Stabilization Scheme for the Navier-Stokes Equations , 2004 .

[18]  F. Suttmeier,et al.  An adaptive displacement/pressure finite element scheme for treating incompressibility effects in elasto‐plastic materials , 2001 .

[19]  M. Chipot Finite Element Methods for Elliptic Problems , 2000 .

[20]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[21]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[22]  R. Glowinski,et al.  Numerical methods for the navier-stokes equations. Applications to the simulation of compressible and incompressible viscous flows , 1987 .

[23]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[24]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[25]  Noel J. Walkington,et al.  Digital Object Identifier (DOI) 10.1007/s002050100158 An Eulerian Description of Fluids Containing Visco-Elastic Particles , 2022 .

[26]  Rolf Rannacher,et al.  Numerical methods for the Navier-Stokes equations , 1994 .

[27]  Daniel D. Joseph,et al.  Fundamentals of Two-Fluid Dynamics: Part II: Lubricated Transport, Drops and Miscible Liquids , 1992 .

[28]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[29]  Jaroslav Hron,et al.  Fluid-structure interaction with applications in biomechanics , 2007, Nonlinear Analysis: Real World Applications.

[30]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .